perfu	ınd Record	ls Center Cannoy Fran
SIE: Cr	ease & Cook	Cannon tom
BREAK:	9.10	
OTHER.		

Former Creese & Cook Tannery 25 Clinton Avenue Danvers, Massachusetts RTN #3-0303 & 3-12711

Prepared for:

Orchard Farm Trust 39 Cross Street Peabody, MA

December 2006

35 New England Business Center Andover, MA 01810 (978) 557-8150

www.woodardcurran.com

Page 1 of 147

TABLE OF CONTENTS

SEC	TION	PAGE NO.
1.	INTRODUCTION	
2.	PROJECT DESCRIPTION	2-1
	 Disposal Site Description and History Summary of Previous Response Actions Conditions Warranting Immediate Response Actions Current Site Receptors 	2-1 2-2 2-2
3.	IMMEDIATE RESPONSE ACTIONS SINCE LAST STATUS REPORT	3-1
	3.1 Status of Assessment and Response Actions	🗸 🗀
4.	IMMINENT HAZARD EVALUATION	4-1
	4.1 Data Reduction and Imminent Hazard Evaluation 4.2 Hazard Identification 4.2.1 Soil 4.2.2 Sediment 4.2.3 Selection of Potential Contaminants of Concern 4.3 Exposure Assessment 4.3.1 Exposure Assumptions 4.3.2 Exposure Point Concentrations 4.4 Dose-Response Assessment 4.5 Characterization of Risk to Human Health 4.6 Risk of Harm to the Environment	4-1 4-2 4-3 4-4 4-5 4-5 4-6 4-6 4-6
5.	PROPOSED IMMEDIATE RESPONSE ACTIONS	5-1
	5.1 Asbestos-Containing Building Materials 5.2 Imminent Hazard Soils	5-1 5-1 5-1
6	LICENSED SITE PROFESSIONAL OPINION	6-1

1. INTRODUCTION

Woodard & Curran Inc. (W&C) is submitting this Immediate Response Action (IRA) Status Report on behalf of Orchard Farm Trust for the former Creese & Cook Tannery Beamhouse Disposal Site (the "Site") at 25 Clinton Avenue in Danvers, MA. This report was developed in accordance with the IRA Status Report requirements of the Massachusetts Contingency Plan (MCP) set forth at 310 CMR 40.0425, and as follow up to the IRA Plan dated November 15, 2006. This report serves as a report on the status of response actions conducted since the submittal and approval of the IRA Plan in November of this year and also as a modified plan for further response actions to address IRA conditions at the Site.

The Disposal Site Description and History, Summary of Previous Response Actions, and Identified IRA Conditions are discussed in Section 2. Section 3 provides an update of recent response actions conducted under the IRA and new site data. Section 4 provides a plan and schedule for additional response actions and Imminent Hazard Evaluation under the IRA.

A copy of the IRA Transmittal Form (BWC-105) is included in Appendix A.

RECEIVED DEC 2 6 2006

DEP NORTHEAST REGIONAL DEFIGE

2. PROJECT DESCRIPTION

2.1 DISPOSAL SITE DESCRIPTION AND HISTORY

The former Creese & Cook leather tannery operated on portions of both sides of the Crane River from approximately the 1930's to 1984. Tanning and finishing activities were performed on the opposite side of the River in the area known as Danversport. The beamhouse operations, where skins were initially treated, dehaired, and bated prior to chroming and finishing, occurred at the Site. The air photo below shows the Site location, and a Site Locus Map is provided as Figure 1.

Inset 1: Air Photo, Former Creese & Cook Tannery Beamhouse Location

Initial treating and dehairing operations for tanning typically involve soaking the skins to treat them for infestation and to prepare the skins for the mechanical removal of hair. Soaking was typically done with either organic acid solutions or arsenic solutions. These solutions frequently also contained phthalates, which were added as a penetrant. Phthalates were also used in the finishing process in lacquers to aid in penetration into the chromed skins. Final dehairing typically involves scraping of the skins in the presence of a strong basic solution or oxidant solution. Bating is primarily a pH adjusting step to neutralize and soften the skins prior to chroming, and was accomplished in an adjusting bath. All of the solution baths would have accumulated solids and/or lost their strength after a period of time, and would have been discharged to on-site lagoons prior to replenishing the baths.

Dehairing and bating operations were conducted at the Site. Historical records indicate that lime pits were located within the footprint of the former Beamhouse. Discharge from dehairing and bating operations was directed to on-site lagoons located to the east of the Beamhouse, before decanting into the Crane River through a subsurface discharge pipe.

2.2 SUMMARY OF PREVIOUS RESPONSE ACTIONS

In the late 1980's, SP Engineering, working for the former tannery owners, investigated the Site and conducted remedial actions consisting of the removal of solid wastes for placement into a capped landfill on the western portion of the Site along the margin of the property bounded by State Route 128. In the

late 1990's, investigations by REW Environmental Consultants (REW) identified areas of arsenic-impacted soil near the former beamhouse and the former lagoons, and an area of miscellaneous solid waste fill at the northeastern portion of the Site but concluded that an Imminent Hazard did not exist in the former lagoon area. REW also conducted a Phase III evaluation, stating that upland remediation-could be accomplished by removing most of the impacted soils for containment into the existing on-site landfill.

Geological Field Services, Inc. (GFS) submitted an IRA Status Report in February of 2005 and conducted additional sediment samples for the assessment of arsenic in salt marsh and mudflat sediments later that year. Sediment sample results were compared to known results from prior site sampling and a sediment dredging study conducted for the Town of Danvers in 2001. GFS also identified historical records indicating at least seven other tanneries and a former Manufactured Gas Plant (MGP) which discharged to this watershed. The sediment investigation results were provided directly to Mr. Chris Coolen of MassDEP Northeast Region in June 2005.

2.3 CONDITIONS WARRANTING IMMEDIATE RESPONSE ACTIONS

Arsenic concentrations in surface soils within 12 inches of ground surface have been identified above the Imminent Hazard threshold concentrations promulgated at 310 CMR 40.0321. Surface soil data indicate that Arsenic concentrations above the 40 mg/kg threshold exist at the following locations:

- Area "A" near the former Beamhouse;
- Area "B" at the northern end of the Site;
- Area "C" at the former lagoon;
- Within the Limits of the former Beamhouse; and
- Uplands between the historic cemetery and the adjacent retail parking areas.

These locations are shown on Figure 2. Additionally, MassDEP directed Orchard Farm Trust to conduct assessment for cyanide, dioxins, and chromium to support an updated Imminent Hazard Evaluation. Sampling for these parameters in site soils and Crane River sediments was conducted by Woodard & Curran on November 21 and 22, 2006 (see Section 3.1).

2.4 CURRENT SITE RECEPTORS

Current potential Human receptors at and immediately surrounding the Disposal Site include:

- Trespassers accessing the Site;
- Recreators using the Crane River for passive recreational purposes (canoeing, bird watching, etc.); and
- Workers engaged in Waste Site Cleanup activities.

3. IMMEDIATE RESPONSE ACTIONS SINCE LAST STATUS REPORT

3.1 STATUS OF ASSESSMENT AND RESPONSE ACTIONS

Woodard & Curran conducted soil and sediment sampling in accordance with the November 15, 2006 IRA Plan on November 21 and 22, 2006. An initial investigation of debris in the Beamhouse area determined that soil sampling in the Beamhouse area would not be possible using hand methods due to the volume of debris and the configuration of a remnant concrete and brick floor. David MacDonald, LSP-of-Record for the Site, contacted Mr. Chris Pyott at MassDEP and received approval to delay this portion of the sampling plan until a licensed asbestos inspector could assess the debris piles for asbestos containing materials (ACM) and draft a debris removal plan to prevent mechanical spreading of potential ACM in the debris.

W&C field engineers prepared to collect the remainder of the samples outlined in the IRA Plan. All soil samples were collected in the 0-12" bgs range with a stainless steel shovel. This shovel was decontaminated between each sample with an Alconox and water solution and scrubbed with a brush. Soils were placed into a stainless steel mixing bowl and mixed with a spoon for homogenization before being placed into sample jars. The bowl and spoon were decontaminated in the same manner as the shovel between each sample. Weather on both sampling days was mostly sunny with temperatures around 40 °F. All sample locations were recorded using a global positioning unit in the field.

Samples collected on November 21, 2006 included samples in the Upland Area, Area A, and Area B. All samples collected in these areas were field screened with an X-Ray Fluorescence (XRF) meter to analyze concentrations of arsenic and total chromium in the field. A random selection of these samples was also analyzed for total lead. Additionally, 30% of the samples screened with the XRF were also submitted for confirmatory laboratory analysis of the same parameters. Table 1 shows the IRA Plan's Analytical Testing Summary, and Table 2 lists the laboratory results and field screening results for samples analyzed by XRF. Results from this sampling event are also shown on Figure 3.

W&C began to collect sediment samples in the late afternoon on November 21 as the tide drew down. Five sediment samples were collected on this afternoon, and the remaining fifteen sediment samples were collected early in the morning of November 22 following the 5:32 a.m. low tide. Sediment sample collection methods were the same as soil collection methods except that sampling depth for sediment was 0-6" bgs. Sediment samples were also field screened with the XRF for arsenic, total chromium, and lead.

Soil samples from the former Lagoon area (Area C) were also collected on November 22, 2006. One duplicate sample was collected in this area (WC-101) as a duplicate of sample WC-23. One background sample (WC-44) was also collected for analysis of dioxins and arsenic at the southeastern corner of the Site, just beyond the end of the old railroad bridge that crosses the Crane River.

A licensed asbestos inspector, Ms. Patti Riley of Enviro-Safe Engineering, was on-site on November 22 to assess the nature of the building debris in the former Beamhouse. Ms. Riley collected samples of several types of suspect building debris found in the Beamhouse for analysis of asbestos. Various materials were identified as asbestos containing materials, including black mastic on concrete, and at least one piece of transite. The asbestos abatement work plan prepared by Enviro-Safe is included as Appendix B.

3.2 DATA QUALITY ASSESSMENT

The data reports provided by the laboratory were reviewed for quality assurance parameters. Biases, data qualifications, and how these were handled within the Imminent Hazard Evaluation are discussed in section 4 of this report. No data planned for use in the evaluation needed to be rejected based on lab quality assurance results.

The objectives of the sampling and testing were to collect surface soil and sediment representative of current site conditions for evaluation of potential Imminent Hazard conditions at the Site. The distribution, type, and concentrations of parameters detected were consistent with historical results, anticipated results based on site history, and/or the location of known source areas and operations at the Site. The results are therefore considered representative of site conditions, within the limitations of the sampling program. A more detailed Background assessment is warranted for future sampling activities. To conservatively account for the limitations in the current Background assessment, concentrations of Dioxins above those detected in the one reported Background sample (WC-44) were used in the IHE as conservatively representative of source area concentrations.

The data are considered of sufficient quality for the rendering of an LSP opinion relative to potential Imminent Hazard Conditions at the Site.

DEP VORTHEAST REGIONAL OFFICE

4. IMMINENT HAZARD EVALUATION

4.1 DATA REDUCTION AND IMMINENT HAZARD EVALUATION

As per MassDEP's notice of August 4, 2006, and as described in the IRA plan dated November 9, 2006 (prepared by Woodard & Curran), an Imminent Hazard Evaluation (IHE) for human health and the environment has been performed for the Site. This evaluation was requested by the MassDEP as a result of the historical detection of elevated concentrations of various constituents sediment associated with former tannery operations, including arsenic, lead, and chromium, within surface and subsurface soils across the Site and in sediment of the adjacent Crane river. Subsequent to MassDEP's request, Woodard & Curran collected additional surficial (0-1' bgs) soil and sediment chemical data, which included the analysis of arsenic, chromium (total and hexavalent), lead, cyanide (total and physiologically-available), and chlorinated dioxins and furans, as previously described in Section 3.1.

Although other constituents, such as volatile organic compounds (VOCs), have been detected on the Site property, the IHE focuses specifically upon potential exposures to only arsenic, lead, hexavalent chromium, and dioxins/furans, as concentrations of these constituents are prevalent within surface soils and, to a lesser extent, adjacent river sediments, and present the greatest toxicity relative to other constituents detected at the Site. For a more detailed description of historical Site operations and Site conditions, please refer to Section 2.1.

The IHE was completed in accordance with the performance standards for an IHE promulgated in the Massachusetts Contingency Plan (MCP; 310 CMR 40.0950), as well as with the MassDEP document "Guidance for Disposal Site Risk Characterization in Support of the Massachusetts Contingency Plan" (MassDEP, 1995). The structure of the human health IHE is similar to a site-specific Method 3 human health risk characterization under the MCP, with the exception that it addresses only current exposures over a short timeframe (5 years). The purpose of the human health IHE is to evaluate the potential short-term human health risks posed by the levels of constituents present in accessible media at the Site. The human health IHE is organized in the following manner:

- Hazard Identification (Section 2.0);
- Exposure Assessment (Section 3.0);
- Dose-Response Assessment (Section 4.0); and
- Risk Characterization (Section 5.0).

Additionally, we have conducted an IHE for the environment in accordance with the MCP.

4.2 HAZARD IDENTIFICATION

The objective of the hazard identification is to summarize the nature and extent of chemical constituents at the Site, and to select chemicals of potential concern (COPCs) for consideration in the evaluation of potential site health risks. A description of the collection and analysis methodologies and analytical results for the Site is provided in Section 3 of this report; sample locations are shown on Figure 3. This section briefly summarizes the historical analytical data collected during past site investigations by other consultants, as well as the supplemental surficial soil and sediment data collected by Woodard & Curran in November 2006.

4.2.1 Soil

An imminent hazard evaluation considers soil-related exposures at or within 12 inches of ground surface (310 CMR 40.0953(2)). For this evaluation, the nature and extent of contamination in surficial Site soils were therefore characterized based on surficial soil samples collected at the Site between September 1986 and November 2006. Only soil samples collected between 0 and 12 inches below ground surface (bgs) were included in the human health IHE to characterize current exposure. Historical data indicating samples collected over a larger depth interval (e.g., 0-3' bgs) that potentially encompassed soils located greater than 1' bgs were not included in the IHE.

Soil samples collected by previous consultants (i.e., soils collected prior to November 2006) were generally submitted for laboratory analysis of arsenic, cadmium, total chromium, lead, and/or mercury. The majority of samples collected by Woodard & Curran in November 2006 were screened in the field for arsenic, total chromium, and lead using an X-ray fluorescent (XRF) spectrometer. Approximately 30% of the samples screened with the XRF were also submitted for confirmatory laboratory analysis of the same parameters. In addition, soil samples collected by W&C in November 2006 were submitted for laboratory analysis of hexavalent chromium, cyanide (total and/or potentially available) and/or chlorinated dioxins/furans. Soil sampling results used to quantify potential human health risks associated with Site exposures are summarized on Table 3.

Arsenic: A total of 42 soil samples included in the IHE were submitted for laboratory analysis of arsenic, while 30 soil samples were field screened via XRF. Of the 19 soil samples analyzed for arsenic via XRF, five duplicate samples were collected and sent out for laboratory analysis of each parameter to confirm the XRF results. Results between each method of analysis for detected samples varied among samples, with a relative percent difference (RPD) for arsenic ranging from 10% to 47%, with XRF data generally biased low. Although discrepancies exist between the XRF and laboratory analyses for arsenic, the correlation between the two datasets was generally high. Inclusion of the XRF data is thus valuable and appropriate in characterizing the extent of contamination in Site surface soil and sediment and evaluating potential risks.

Concentrations of arsenic detected within surficial Site soils range from 3.92 mg/kg (lab data) to 209 mg/kg (XRF). Highest concentrations of arsenic were generally observed within Areas A, B, and C, although elevated concentrations were also observed in some of the upland areas, particularly within the eastern portion of the Site between the former Beamhouse and Route 128. Arsenic was also detected at 83 mg/kg in the background sample WC-44, suggesting that concentrations of arsenic detected in at least some of the site locations may be reflective of sources unrelated to the site (e.g., natural geochemistry or anthropogenic sources, such as atmospheric deposition).

Chromium: A total of 16 soil samples included in the IHE were submitted for laboratory analysis of total chromium, while 19 soil samples were field-screened via XRF (five of which overlap with laboratory analytical data). Concentrations of total chromium detected within surficial soils ranged from 22.2 mg/kg (lab data) to 5,889 mg/kg (XRF). The highest concentrations total chromium were generally observed within Areas A and B, although variable concentrations of total chromium were generally observed across the Site. Correlation between 2006 XRF and laboratory data for total chromium was relatively high (approximately 99%), with the XRF results biased high. As described below, total chromium was eliminated as a COPC, but hexavalent chromium was retained for further evaluation.

A total of 31 soil samples included in the IHE were submitted for laboratory analysis of hexavalent chromium, with concentrations ranging from 2.6 mg/kg to 333 mg/kg. Concentrations of hexavalent chromium were significantly lower than concentrations of total chromium detected at the Site, generally

comprising less than 10% of the total chromium concentration, although the highest detected hexavalent chromium concentrations generally coincided with soil samples containing elevated total chromium concentrations (within Areas A and B).

Cyanide: A total of 31 surficial soil samples were submitted for laboratory analysis of total cyanide, eight of which were also analyzed for physiologically available cyanide (PAC). Total cyanide was detected at a very low concentration in only one soil sample (0.84 mg/kg, just above the detection limit), while PAC was not detected in any of the submitted soil samples.

Lead: Six surficial soil samples were analyzed for lead in soil; of these, five samples were analyzed via XRF. Results ranged from 32 mg/kg to 126 mg/kg, with the highest concentrations occurring in the samples collected from Areas A and C.

Chlorinated dioxins/furans: Seventeen surficial soil samples were submitted for congener analysis of chlorinated dioxins and furans (CDF). All congener analytes were detected at variable concentrations in all soil samples submitted for analysis, including the one background soil sample WC-44 (albeit at lower concentrations). The highest concentrations were generally detected at locations WC-1 and WC-3 in Area A and WC-41, located at the top of a fill pile north of the gravel road. This location also had elevated concentrations of arsenic and chromium.

4.2.2 Sediment

The nature and extent of contamination in Site sediments were characterized based on sediment samples (1984-2006 samples were collected within 0-18" bgs; 2006 samples were collected within 0-6"bgs) collected at the Site between May 1984 and November 2006. Samples have been collected along the banks of the Crane River, in the appurtenant salt marshes and in the mudflats.

Sediment samples collected by previous consultants (i.e., sediments collected prior to November 2006) were generally submitted for laboratory analysis of arsenic, cadmium, total chromium, copper, lead, mercury, nickel, and/or zinc. Samples collected by W&C in November 2006 were screened in the field for arsenic, total chromium, and lead via XRF. In addition, sediment samples collected at the same location as field-screened samples were submitted for laboratory analysis of hexavalent chromium, total cyanide, PAC, and/or chlorinated dioxins/furans. For samples field-screened for total chromium via XRF, approximately 30% were also submitted for confirmatory laboratory analysis of total chromium. Correlation between XRF and laboratory chromium data-was marginal (approximately 75%), with XRF results consistently biased low. In this evaluation, however, we used only hexavalent chromium data, generated from laboratory analysis. Sediment samples field-screened for arsenic and lead were not submitted for confirmatory laboratory analysis of those parameters, as there are historical laboratory data for this medium at similar locations. Sediment data included in the IHE are summarized in Table 4.

Arsenic: Fifty-three sediment samples were analyzed for arsenic. Results ranged from non-detect to 553 mg/kg¹, with the highest concentrations generally found in the salt marsh areas, relative to the mudflats.

Chromium: Thirty-four sediment samples were analyzed for chromium via laboratory and/or XRF analysis. Concentrations of total chromium were variable in sediment, ranging from 59 mg/kg to 5390 mg/kg. Although there is no distinguishable spatial pattern to chromium distribution, concentrations

4-3

¹ Note that this concentration in sediment is higher than those detected in Site soils.

appeared higher in historical samples relative to those collected in 2006. Older samples were collected over a greater depth interval (up to 18" bgs) than 2006 samples and may represent historical evidence of impact in sediment, which has since been covered by more recent depositional materials. Twenty sediment samples were analyzed for hexavalent chromium, which was detected in 25% of those samples. Concentrations of hexavalent chromium were generally low when compared with total chromium levels. The highest detected concentration of hexavalent chromium (114 mg/kg) was detected at sample WC-SED-16, located in the saltmarsh along the southeastern bank of the river by the bridge.

Cyanide: Twenty sediment samples were submitted for analysis of total cyanide, with 5 of those samples also analyzed for PAC. Neither total cyanide nor PAC was detected in any of the sediment samples.

Lead: Lead was detected in each of the 22 sediment samples analyzed for this parameter. The range of lead concentrations was within a factor of ten, and there was no distinct pattern of impact. The highest detected concentration of 117 mg/kg was present in the 1984 sample collected by the railroad bridge.

Chlorinated dioxins/furans: Chlorinated dioxins and furans were detected in each of the 10 sediment samples for which these constituents were analyzed. Of the congeners, heptachlorodibenzodioxins (HpCDD) and octochlorodibenzodioxins (OCDD) comprised the greatest percentage of total CDF concentrations in sediment. Concentrations of CDFs were variable across the sampling area, with no clear lateral pattern of distribution. In order to provide for a conservative evaluation of potential short term risks, Dioxins have been carried forward in the evaluation. Future study of Background conditions will be conducted as part of Comprehensive Response Actions to evaluate whether the variable pattern of distribution at the site is a result of Background conditions unrelated to site sources.

4.2.3 Selection of Potential Contaminants of Concern

An IHE considers the potential for short-term risks associated with those constituents whose concentration and toxicity is such that the risks from these constituents will likely dominate the cumulative risk at a Site. For soil and sediment, COPCs include the following constituents:

- Arsenic;
- Hexavalent chromium;
- · Lead; and,
- Chlorinated dioxins/furans.

Each of these constituents has been detected in soil and/or sediment at variable levels throughout the Site. Although total chromium was also detected, we evaluated risks associated with only hexavalent chromium, which is significantly more toxic than other chromium species, such as Cr III, which comprise the majority of the total chromium load. Other metals, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and polychlorinated biphenyls (PCBs) have also been detected within soil samples collected at the Site in 1995 and 1996. However, as per the IRA plan (November 9, 2006) and based on the low frequency of detection and concentration of these constituents, VOCs, SVOCs, PCBs and other detected metals have been excluded as COPCs for this IHE.

As cyanide was detected in only one soil sample (at a concentration just above the detection limit) and as PAC was not detected in any of the samples analyzed for this, we did not include cyanide as a COPC.

4.3 EXPOSURE ASSESSMENT

The objective of the Exposure Assessment is to estimate the type and magnitude of potential exposure to Site-related COPCs present at or migrating from the Site. Exposure is quantified for the populations potentially exposed to contaminated media via specific exposure pathways, based on current and future potential land use. The exposure estimates, which are calculated using chemical-specific exposure point concentrations (EPCs), are combined with dose-response (toxicity) information to characterize the potential risk to human receptors.

For an IHE, only actual exposures under current site uses and activities are considered. Potential human receptors are identified based on characteristics of the Site and surrounding areas and potential exposure scenarios under current Site conditions.

The Site currently consists of vacant, unpaved land (much of which is covered with thick vegetation or building debris from the former facility), and is situated in a mixed commercial and residential area of Danvers, Massachusetts. Lightly vegetated footpaths transverse the Site in several locations. The Crane River borders the Site to the north. Access to the river is difficult in many areas of the Site, however, due to the steep bank and thick vegetation.

Although the Site is currently vacant, access to the Site is currently unrestricted and there is visual evidence of trespassing (paintballs, footpaths, etc.). For the IHE, we therefore evaluated potential short-term (5 year) health risks associated with a trespassing scenario. We assumed that a youth (age 6 to 11 years) trespasser/recreational user of the Site may be exposed to the identified COPCs in both Site surface soils and sediments. Routes of exposure evaluated include incidental ingestion of and dermal contact with soil and sediment. Additionally, trespassers may potentially inhale COPCs entrained on fugitive dust resulting from uncovered soil.

4.3.1 Exposure Assumptions

Exposure assumptions for the trespasser scenario are summarized by medium on Table 5 (soil), Table 6 (fugitive dust) and Table 7 (sediment). Woodard & Curran conservatively assumed that a trespasser/recreational receptor would be exposed to soil three days per week, and to sediment two days per week, during the seven non-winter months (April through October) when the ground is not frozen and/or covered by snow and would come into contact with soil or sediment during each exposure event. As discussed, the IHE evaluates short-term exposures of 5 years (310 CMR 40.0953(1)). For incidental ingestion of soil and sediment, Woodard & Curran assumed that a trespasser/recreational receptor would receive the full dose from the Site and ingest 50 mg soil/sediment per day. This value is the daily soil ingestion rate recommended for this age group by MassDEP (1995). We assumed an exposure time of 1 hour per day to evaluate fugitive dust exposures.

The skin surface area used to evaluate dermal exposures to soil for the trespasser/recreational receptor assumed that the hands, forearms and feet would be exposed during a Site visit, to reflect exposures typical of walking across the Site. The 50th percentile surface area of male and female children ages 6 to 11, based on the assumed body parts, was used to estimate daily dermal intake rates (MassDEP, 1995). The soil adherence factor of 0.14 mg/cm² was based on MassDEP's recommendation for a trespasser scenario (MassDEP, 2002c), which W&C assumed was representative of typical outdoor exposures anticipated for this age group.

The skin surface area used to evaluate dermal exposures to sediment for the trespasser/recreational receptor assumed that the hands, forearms, lower legs, and feet would be exposed during a Site visit, to

reflect exposures typical of wading. The 50th percentile skin surface area of male and female children ages 6 to 11, based on the assumed body parts, was used to estimate daily dermal intake rates (MassDEP, 1995). The sediment adherence factor of 1 mg/cm² was based on MassDEP's recommendation for exposures to sediment (MassDEP, 2002c), which is not weighted by skin surface area.

Specific exposure assumptions used to estimate exposure for the trespasser scenario are summarized on Tables 5-7. Exposures were quantified using the general exposure equations for average daily dose/exposures, as provided in MassDEP risk guidance; these equations are provided on Tables 5-7. Exposures were adjusted by MassDEP relative absorption factors, which are summarized on Table 8, in order to account for absorption of COPCs via different exposure routes (oral and dermal).

4.3.2 Exposure Point Concentrations

Exposure point concentrations (EPCs) are estimates of the chemical concentrations to which a potential receptor is likely to be exposed under current and reasonably foreseeable future Site activities and uses, and are dependent upon the exposure period and pathway. In deriving EPCs, W&C considered the dataset discussed previously in the Hazard Identification. In instances where samples were analyzed for a constituent (e.g., arsenic, lead) via both XRF screening and fixed laboratory, however, we used only the laboratory analytical results for that sample. For the dioxin/furan data, where more than one result was reported (i.e., "estimated" concentration, or a reanalysis of a sample), we conservatively used the highest reported or estimated concentration as the final result for that sample.

The soil and sediment datasets were evaluated with respect to lateral distribution of concentrations. Overall, concentrations in each medium appeared variable with no one location showing significantly elevated concentrations with respect to surrounding locations. We did not identify any hotspots at the Site, given the lateral distribution of concentrations and potential for actual exposures to occur. We therefore used the arithmetic mean concentration as the EPC of each COPC in both soil and sediment at the Site. In instances where a COPC was not detected in a sample, we used 1/2 the laboratory reporting limit (LRL) as the concentration for that sample. EPCs are summarized in Table 9.

4.4 DOSE-RESPONSE ASSESSMENT

The dose-response assessment describes the relationship between the level of exposure and the likelihood and/or severity of an adverse effect. In other words, the dose-response assessment quantifies the toxicity of each chemical of concern using information obtained from published literature describing epidemiologic or toxicological studies.

Tables 10 through 13 provide summaries of the toxicity values for carcinogenic and noncarcinogenic effects. Toxicity information was obtained from the USEPA IRIS database when available, or from MassDEP recommended values (MassDEP 2006), and is summarized in Tables 10-13. For chlorinated dioxin and furan congeners, we applied the MassDEP Toxicity Equivalency Factors (TEFs) for each congener to the USEPA Cancer Slope Factor and Inhalation Unit Risk values (USEPA 1997) for 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), which is the most toxic of the congeners.

4.5 CHARACTERIZATION OF RISK TO HUMAN HEALTH

A summary of risk estimates for the youth trespasser is presented in Table 14. Risk calculations for exposures to soil, fugitive dust and sediment are presented in Tables 15 through 19. As shown, the cumulative noncancer hazard index (HI) of 0.3 is well below the MCP Imminent Hazard risk limit of 10; however, the excess lifetime cancer risk (ELCR) of 4 x 10⁻⁵ exceeds the MCP cancer risk limit of 1 x 10⁻⁵

(310 CMR 40.0955(2)(b,c)). Cancer risks are primarily related to dermal and ingestion exposures to chlorinated dioxins/furans and, to a lesser extent, arsenic in soil and sediment.

The risk to human health at the Site is driven most strongly by dioxin and arsenic in soils. Concentrations of dioxins at WC-1, WC-3 (Area A), and WC-41 (Upland) and arsenic at WC-11 (Area A) and WC-16 (Area B) have been identified as the sample locations with the greatest influence on the Imminent Hazard identification. Therefore, it is concluded that concentrations of COPCs in surficial soil and sediment pose an Imminent Hazard to human health.

4.6 RISK OF HARM TO THE ENVIRONMENT

The risk of harm to the environment was evaluated with respect to the following conditions set forth in the MCP (310 CMR 40.0955(3)):

- Evidence of stressed biota attributable to the release at the Site (e.g., fish kills or abiotic conditions)
- A release to the environment of oil and/or hazardous materials which produces immediate or acute adverse impacts to freshwater or saltwater fish populations.

The Site consists of both upland and wetland areas bordering the Crane River. As the Site has remained unused since the tannery ceased operations in 1984 the facility was demolished approximately one year ago, thick stands of vegetation (grasses, shrubs, and trees) have overgrown upland portions of the Site, with the exception of the debris piles and building foundation/paved areas. The Site is bordered to the east by the Crane River and appurtenant marshland. The riverbanks are vegetated with typical marsh vegetation. W&C personnel have observed evidence of songbirds and mammals at the Site.

As no stressed biota have been observed at the Site and as no acute adverse impacts have been attributed to the release, it is concluded that Site conditions do not present an Imminent Hazard to the environment (310 CMR 40.0955(4)).

RECENTO

QEC 2 6 2006

DEP VORTHEAST REGIONAL OFFICE

5. PROPOSED IMMEDIATE RESPONSE ACTIONS

5.1 ASBESTOS-CONTAINING BUILDING MATERIALS

The building debris in the former Beamhouse area includes some asbestos containing materials that need to be managed accordingly. Oral Notification was previously made for this and a Release Tracking Number is being assigned. The debris will need to be handled by an environmental cleanup contractor that is licensed to work with asbestos containing materials. A licensed asbestos inspector will be onsite during cleanup activities to monitor the work and be present in the event that unexpected materials are uncovered during excavation. Machine operators must have, at a minimum, a two-hour asbestos awareness training administered by a licensed asbestos inspector. If it becomes necessary to cut concrete that has ACM attached to it, a containment structure will need to be built by an approved contractor. A copy of the Asbestos Abatement Plan for conduct of the proposed work is included as Appendix B.

5.2 IMMINENT HAZARD SOILS

Chemicals of Potential Concern at the Site pose an Imminent Hazard and a risk to human health. The primary drivers of this risk are dioxins in soils at WC-1, WC-3, and WC-41, and arsenic in soils at WC-11 and WC-16, indicating that soils in Area A, Area B and the Upland Soils in one sampling location between Route 128 and the Beamhouse pose potential Imminent Hazards to human receptors. Immediate response actions will be undertaken to address the hazard posed by these soils. Pending weather conditions and approval of the Danvers Conservation Commission, soils in these areas will be fenced to prevent human contact with the soils as a short term measure. Fencing will be installed around the areas previously identified as Area A and Area B on the attached site plan. The presence of dioxins at the location of WC-41 (upland soils) is assumed present as a result of filling activities associated with former site operations. In response, fencing will be installed based on topography in the immediate vicinity of this sample to prevent access to soils in elevated areas which may represent net areas of fill. Remediation of the soils in areas driving the Imminent Hazard will occur as part of Comprehensive Response Actions that will occur at the Site to address both short and long term exposure risks. The extent of soil remediation will be determined once cleanup goals have been set, which, at a minimum, will reduce COPC concentrations to a level that does not pose a significant risk to human health.

5.3 MANAGEMENT OF REMEDIAL WASTES

All ACM originating from the building debris will be sent off-site to an approved receiving facility and managed by waste manifest protocol. No additional remedial waste generation is proposed in this plan.

5.4 STATE, FEDERAL, AND LOCAL PERMITTING REQUIREMENTS

In addition to approval by the Bureau of Waste Site Cleanup for work as proposed in this plan, notification will be provided to the MassDEP and the Department of Occupational Safety as required at least 10 calendar days prior to conduct of the asbestos removal work.

5.5 SCHEDULE FOR PROPOSED ACTIVITIES

If approved by MassDEP as written, activities for the removal of asbestos from the building debris will begin after the first of the year. Bidding and contractor selection will occur in January. Contractor selection will be based on licensing and qualifications. Weather pending, removal will occur by the end

of February. Documentation of the removal and disposal will be provided in an Immediate Response Action Completion Report following completion of the activities.

Bidding and procurement for the installation of fencing will also be conducted in January. Pending weather conditions and local City approvals, fencing installation will be conducted in January/February and documentation detailing these activities will be provided within 60 days of this plan update submittal (February 26).

RECEIVED

DEC 2 6 2006

NORTHEAST REGIONAL OFFICE

Page 19 of 147

ANALYTICAL TESTING SUMMARY SEDIMENT AND SOIL SAMPLING

Former Creese Cook Tannery, Danvers, MA

					Analyti	cal Parame	ters .			
Sample		Sample Depth		Physiologically Available		→ Arsenic	Total Chromium	Hexavalent Chromium	Total Organic Carbon	Rationale
Location	Location	(ft bgs)	Cyanide	Cyanide'	Dioxin	T Albeine	Cinomian	0		
il Samples				,		X ^r	X ¹	X	-	to yield data for IHE
0-1	Landfill Area A	0 - 1	Х		X	X'	X X	X		to yield data for IHE
C-2	Landfill Area A	0-1	Х	1			X ²	×		to yield data for IHE
C-3	Landfill Area A	0 - 1	Х	L	X	X ²	X ² X ¹	X		to yield data for IHE
C-4	Landfili Area A	0 - 1	Х	X		X' .				to yield data for IHE
C-5	Landfill Area A	0 - 1	X	T	X	X1.	X v2	X		to yield data for IHE
C-6	Landfill Area A	0-1	X			X ²	X ²	. X		to yield data for IHE
C-7	Landfill Area A	0-1	X		X	X ¹	Χ,	X .		to yield data for IHE
C-8	Landfill Area A	0-1	X	X		X'	X1	X		to yield data for IHE
C-9	Landfill Area A	0-1	Х	T	X	X ²	X ²	X:		to yield data for IHE
C-10	Landfill Area A	0-1	X	T		X'	X1	,X'	<u> </u>	to yield data for IHE
C-10	Landfill Area A	0-1:	Х		X	X'	X'	X.		to yield data for IHE
	Landfill Area A	0-1	. X	X		Χ'	Χ'	X	ļ	to vield data for IHE
/C-12 .)	Landfill Area B	0-1	X		, X	X ¹	. X'	X		to yield data for IHE
	Landfill Area B	0-1	X			X²	X²	X	ļ	to yield data for IHE
/C-14	Landfill Area B	0-1	X		X	X,	X'	Χ.	<u> </u>	to yield data for IHE
/C-15	Landfill Area B	0 - 1	X	X		X ¹	X ¹ .	X	ļ	to yield data for IHE
/C-16	Lagoon Area C	0-1	Х		Х			X		to yield data for IHE
/C-17	Lagoon Area C	0-1	Х					X	 	to yield data for IHE
VC-18	Lagoon Area C	0-1	X		X			X	<u> </u>	to yield data for IHE
VC-19	Lagoon Area C	0-1	, X	X				Χ.	1	to yield data for IHE
VC-20	Lagoon Area C	0-1	X	1	Χ.			X	1 - ,	to yield data for IHE
VC-21 VC-22	Lagoon Area C	0-1	X					X	 	to yield data for IHE
	Lagoon Area C	0-1	X		X			X	4	to yield data for IHE
VC-23	Lagoon Area C	0-1	Х	X	1			X		to yield data for IHE
VC-24 VC-25	Lagoon Area C	0-1	X		X			X		to yield data for IHE
VC-25	Lagoon Area C	0-1	X					X		to yield data for IHE
NC-27	Lagoon Area C	0-1	. X		X			X	 	to yield data for IH
NC-28	Lagoon Area C	0-1	X	X	1			X	1	to yield data for IHI
NC-28 NC-41	Uplands	0-1	Х		X	X'	X'	. X	4	to yield data for IHI
NC-41	Uplands	0-1	X		X	X²	X ²	X		to yield data for IH
	Uplands	0-1	X	X	X	X'	x' ·	X		. To yield data for it is
WC-43	Total # of S	Soil Samples	31	8	17	. 19	19	31.	- 0	<u> </u>
										The state of the s
Sediment San	Crane River - salt marsh	0 - 0.5	X		X		X1	. Xi.	<u> </u>	to yield data for IH
WC-SED-1	Crane River - salt marsh	0 - 0.5	X				X1	X	i X	to yield data for IH
WC-SED-2	Crane River - mud flats	0 - 0.5	1 X		X		X ²	X	X	to yield data for IH
WC-SED-3	Crane River - salt marsh	0 - 0.5	X	X	×		X'_	Χ		to yield data for IH
WC-SED-4	Crane River - salt marsh	0 - 0.5	X				X'	X		to yield data for IH
WC-SED-5	Crane River - salt marsh	0 - 0.5	X		X		X ²	X	<u> </u>	to yield data for IH
WC-SED-6	Crane River - mud flats	0 - 0.5	X				X1	X .		to yield data for IH
WC-SED-7.	Crane River - mud hats Crane River - salt marsh	0 - 0.5	1 ×	×			χ'	X	X	to yield data for IH
WC-SED-8	Crane River - sait marsh Crane River - mud flats	0 - 0.5	X		X	_	X ²	X	X	to yield data for IH
WC-SED-9		0 - 0.5	 x				, X ¹	X		to yield data for II-
WC-SED-10	Crane River - salt marsh	0 - 0.5	+ x				Χ1	X.		to yield data for II-
WC-SED-11	Crane River - mud flats	0 - 0.5	x	×	. X		X'	Х		to yield data for II-
WC-SED-12	Crane River - salt marsh	0 - 0.5	+ x		X		X ²	X		to yield data for II-
WC-SED-13	Crane River - mud flats						X'	X	X	to yield data for If
WC-SED-14	Crane River - salt marsh	0 - 0.5					X1	X		to yield data for II-
WC-SED-15	Crane River - salt marsh	0 - 0.5		×	X		X ²	X.		to yield data for il-
WC-SED-16	Crane River - salt marsh	0 - 0.5		^			X'	X ·	. X	, to yield data for Il
WC-SED-17	Crane River - mud flats	0 - 0.5					X ²	X:		to yield data for II
WC-SED-18	Crane River - salt marsh	0 - 0.5	_		X	- 	X ¹	X:		to yield data for II
WC-SED-19	Crane River - mud flats	0 - 0.5		X .	X	X'	X'	X		to yield data for I
WC-SED-20	Crane River - salt marsh	0 - 0.5		5.	10	1	20	20	. : 6.	
	Total # of Sedin	nent Sample	s 20				· · · · · · · · · · · · · · · · · · ·		1	
Duplicate Sa	imples				-1			X ,	-17	to yield data for I
WC-101	duplicate of WC-23	0 - 1	X		, X.	- 		1	0	to yield data for I
	Total # of Dupli	cate Sample	98 1	0		0	0	-1	:-1 	1 7.5.5 522 75.1
Background										to yield data for I
WC-44	southeast property near R/F	0-1		•	X.	X		كني ا		to yield data for it
1144C-44	Total # of Backgro		es 0	0.	1	1	0	0,.	. 0	to yield bata lot I

Notes

- X = Sample will be submitted for laboratory analysis of this parameter by methods indicated below.
- $\mathbf{X}^1 = \mathbf{Sample}$ will be analyzed in the field by X-ray Fluorescence Spectroscopy (XRF)
- X^2 = Sample will be field analyzed by XRF and also submitted to the lab for confirmatory analysis by methods indicated below.
- 1 = The analysis of 25% of samples for Physiologically Available Cyanide (PAC) was added to the analysis plan on 12/1/05.
- Cyanide will be analyzed by EPA Method 90108 Dioxin will be analyzed by EPA Method 8290
- Laboratory analysis of Arsenic and Total Chromium will be conducted by EPA Method 6010B. Laboratory analysis of Hexavalent Chromium will be conducted by EPA Method 7198A

TABLE 2

ANALYTICAL RESULTS SEDIMENT AND SOIL SAMPLING Former Creese Cook Tannery, Danvers, MA

							Analy	tical Paran	neters			
					T	Total						
		Sample		Arsenic	Arsenic	Chromium	Total		PAC	Hexavalent Chromium	Percent	Lead (XRF
Sample		Depth	Sample	(XRF	(Lab	(XRF	Chromium	0	Cyanide	(Lab result)	Solids	result)
Location	Location	(ft bgs)	Date	result)	result)	result)	(Lab result)	Cyanide	Cyamue	[/cap result/]	GOILGE	1,500.07
Soil Samples					T	< 262		< 0.63		14.9	77.2	
WC-1	Landfill Area A	0 - 1	11/21/08	30	 	< 210		< 0.61		< 2.5	81	-
WC-2	Landfill Area A	0 - 1	11/21/06	31		1312	1070	< 0.53		< 2.5	80	
WC-3	Landfill Area A	0 - 1	11/21/06	-65	77,1	< 194		< 0.47	< 0.49	2.6	91.1	43
WC-4	Landfill Area A	0 - 1	11/21/06	< 14 41		2375		< 0.59		17.1	79.9	
WC-5	Landfill Area A	0-1	11/21/06	37	59.5	< 230	128	< 0.53		3.8	86.1	
WC-6	Landfill Area A	0-1	11/21/06	< 13	39.3	2572		< 0.49		43.3	87.1	32
WC-7	Landfill Area A	0 - 1	11/21/06	< 10	 	809		< 0.60	< 0.58	77.8	82.4	
WC-8	Landfill Area A Landfill Area A	0-1	11/21/06	75	83.5	625	370	< 0.55		17.4	81.3	
WC-9 WC-10	Landfill Area A	0-1	11/21/06	24		5889		< 0.69		333	68.5	<u> </u>
WC-10 WC-11	Landfill Area A	0-1	11/21/06	209		< 135		< 0.61		< 2.5	78.8	50
WC-12	Landfill Area A	0 - 1	11/21/06	89		1380		< 0.55	< 0.58	48.6	78.9	126
WC-13	Landfill Area B	0 - 1	11/21/06	96		683		< 0.55		21.2	86.2	<u> </u>
WC-14	Landfill Area B	0-1	11/21/06	30	41.4	406	264	< 0.56		27.7	86.9	<u> </u>
WC-15	Landfill Area B	0-1	11/21/06	48		327		< 0.53		14.7	91.3	38
WC-16	Landfill Area B	0-1	11/21/06	169		1721		< 0.56	< 0.60	< 2.5	80.9	
WC-17	Lagoon Area C	0 - 1	11/22/06			-		<0.54	<u> </u>	5.5	85.9	
WC-18	Lagoon Area C	0 - 1	11/22/06			<u> </u>		<0.54	<u> </u>	8.4	85.5	
WC-19	Lagoon Area C	0 - 1	11/22/08					<0.52		5.8 < 2.4	90.9 84	 - : - '
WC-20	Lagoon Area C	0 - 1	11/22/06	-		-		<0.58	< 0.58	<2.4	71.8	
WC-21	Lagoon Area C	0 - 1	11/22/06		 		<u> </u>	<0.63		3.5	87.3	
WC-22	Lagoon Area C	0 - 1	11/22/06					<0.55		<2.6	77.7	
WC-23	Lagoon Area C	0 - 1	11/22/08	-	<u> </u>			<0.59	<u> </u>	< 2.6	78.4	
WC-101	Lagoon Area C	0 + 1.	11/22/08	:				< 0.63 < 0.50	< 0.51	< 2.2	90.6	
WC-24	Lagoon Area C	0-1	.11/22/08	 -	<u> </u>	<u> </u>		<0.54		9.4	83.7	
WC-25	Lagoon Area C	0 - 1	11/22/06			<u></u>		<0.62		<2.7	73.4	-
WC-26	Lagoon Area C	0-1	11/22/06			<u> </u>		<0.52		<2.5	79.1	
WC-27	Lagoon Area C	0-1	11/22/06					<0.60	< 0.59	5	80.9	
WC-28	Lagoon Area C	0 - 1	11/22/06		-	3457	 	0.84	7 0.55	13.1	81.2	
WC-41	Uplands	0 - 1	11/21/06	166	12.8	< 224	22.2	<0.50		<2.1	- 93.8	
WC-42	Uplands	0-1	11/21/06	20		< 258		<0.55	<0.55	<2.4	84.7	T
WC-43	Uplands	0-1	11/21/06	31	 -	V 230			10,00	1		
Sediment Sa				٠		<u> </u>	·	' 				
		0 - 0.5	11/22/06	99	T == '	399	1	< 1.0	· -	< 7.7	26	76
WC-SED-1 WC-SED-2	Crane River - salt marsh Crane River - salt marsh	0 - 0.5	11/22/06	47	 	309		< 0.68		< 7.3	27.4	84
WC-SED-2	Crane River - mud flats	0 - 0.5	11/22/06	< 7		. < 112	91.9	<0.45		< 3.8	53.2	19
WC-SED-3	Crane River - salt marsh	0 - 0.5	11/22/06	16		174	-	<1.1	< 1.1	< 10	19.4	62
WC-SED-5	Crane River - salt marsh	0 - 0.5	11/22/06	12		< 125		<0.94	-	< 8.2	24.3	63
WC-SED-6	Crane River - salt marsh	0 - 0.5	11/22/08	18		386	916	<0.54		< 4.7	42.6	83
WC-SED-7	Crane River - mud flats	0 - 0.5	11/22/06	< 12		408		<0.62	-	3.9	52.7	73
WC-SED-8	Crane River - salt marsh	0 - 0.5	11/22/06	28		211		<0.68	< 0.71	< 3.9	50.7	82
WC-SED-9	Crane River - mud flats	0 - 0:5	11/22/06	19		637	1710	<0.73		4.8	46.2	107
WC-SED-10	Crane River - salt marsh	0 - 0.5	11/22/08	15		581		<0.79		< 6.3	31.5	63
WC-SED-11	Crane River - mud flats	0 - 0.5	11/22/06	< 14	-	555	. 22	< 0.63	<u> </u>	4.6	48.6	75
WC-SED-12	Crane River - salt marsh	0 - 0.5	11/22/06	< 13		272		<0.89	< 0.92	< 8.7	22.9	51
WC-SED-13	Crane River - mud flats	0 - 0.5	11/22/06	14		463	512	<0.77		< 3.6	55.9	20
WC-SED-14	Crane River - salt marsh	0 - 0.5	. 11/21/06	< 13	-	335		<0.85		< 6.7	29.9	54
WC-SED-15	Crane River - salt marsh	0 - 0.5	11/21/06	59		906		<0.50		< 3.3	60.4	78 95
WC-SED-16	Crane River - salt marsh	0 - 0.5	11/21/06	73		407	1320	<0.54	< 0.55	114	48.7	17
WC-SED-17	Crane River - mud flats	0 - 0.5	11/22/06	< 8		< 120		<0.55	-	< 3.8	53	34
WC-SED-18	Crane River - salt marsh	0 - 0.5	11/21/06	18		241	445	<1.3		<11	18.6 72.7	47
WC-SED-19	Crane River - mud flats	.0 - 0.5	11/22/06	< 17		< 216		<0.59	-0.45	< 2.8		50
WC-SED-20	Crane River - salt marsh	0 - 0.5	11/21/08	51	<u> </u>	682	<u> </u>	< 0.61	< 0.45	19.9	54.2	1 30
				L	٠		L	L		٠		1
Background						T	·		T	T	75.9	T
WC-44	southeast area near R/R	0-1	11/22/08	<u> </u>	. 83	ـــــــــــــــــــــــــــــــــــ	·				10.0	
Notes	4											

Notes
1 - All units are mg/kg (ppm) unless otherwise indicated
2 - Dioxin data is presented in Tables 3 and 4 (Soil and Sodin
3 - Sample WC-101 is a duplicate of sample WC-23

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE FOOT BELOW GROUND SURFACE Former Crease and Cook Tannery Danvers, Massachusette

AS Number (if available)	· · · · · · · · · · · · · · · · · · ·				7440-38-2	7440-43-9	7440-47-3	18540-29-9	7439-92-1
AS Number (if available)		Sample De	pth interval		Arsenic	Cadmium	Total Chromium	Hexavalent Chromism	Lead
Sample ID	Sample Date	(ft	Bottom	Arca	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1 T-	9/10/1986	0	0.5	Area C - Site Wide Arsenic	6.24: [3]	0.745	131 Jan 1240		78.6
aguon i Top S-i	7/21/1995	- 0	0.3	. Area C	46.532222332 [3]		-	-	
S-2	7/21/1995	- 0 ·	0.3	Area C	31.7 [3]		-	-	
S-3	7/21/1995	0 .	0.3	. Area C	57.8 (1900 p)		-		
5-4	7/21/1995	0	0.3	Area C	35.9 (3)		-		-
S-5	7/21/1995	0	0.3	Area C	33.6 [3]		_	-	
3-6	7/21/1995	0	0.3	Area C	25.9 DI	-	-		-
-1	8/30/1995	0.2	0.5	Area C	19.1 [3]	-	88.8 [3]	-	
-2	8/30/1995	0.2	0.5	Area C	10 Sept. 49.0 (Sept. 2013 (3)		-		-
-3	8/30/1995	0.2	0.5	Area C	4.58 [3]	_		_	
-4	8/30/1995	0.2	0.5	Area C	16.9 [3]				
-5	8/30/1995	0.2	0.5	Area C	24.0 [3]		23.0 [3]		
-6	8/30/1995	0.2	0.5	. Area C	Acres 75.9 6-57 135 612 [3]			-	
-7	8/30/1995	0.2	0.5	Area C	·爱安47.7元号か年录 [3]	-	660 a 214 see 58 6550 [9]	-	
-8	8/30/1995	0,2	0.5	Агел С	15.7 [3]		T		
-9	8/30/1995	0.2	0.5	Area C	100-179.03 (American)	-	342 407 (3)		
-10	8/30/1995	0.2	0.5	Ares C	17.3 [3]	-	-	-	
-11	8/30/1995	0.2	0.5	· Area C	25 ag. 40.7 see maintage [3]			-	
-12	8/30/1995	0.2	0.5	Area C	24.8 (3)		-	-	1
-13	8/30/1995	0.2	0.5	Area C	18.7 (3)	_	86.3 [3]	-	
-14	8/30/1995	0.2	0.5	Area C	20.2 [3]		-	-	-
-15	8/30/1995	0.2	0.5	Area C	15.0 [3]		-		-
>16	8/30/1995	02	0.5	Area C	32.9 (3)		-	•-	
>17	8/30/1995	0.2	0.5	Atca C	21.8 (3)		109 [3]	_	-
3-18	8/30/1995	0.2	0.5	Area C	37.0 (3)		· -		
-18	8/30/1995	0.2	0.5	Area C	20% 57.9 (A. 10 (P)		289 10 (21)		-
2-20	8/30/1995	0.b	0.5	Area C	19.3			-	
-21	8/30/1995	0.21	0.5	Area C	7.50 [3]	-	326 September 131		-
-22	8/30/1995	0.2	0.5	Area C	6.10 (3)	-	7-7-1220 BI		 ,
-22	8/30/1995	0.2	0.5	Area C	13.0 [3]		-	-	. <u></u>
-24	8/30/1995	0.2	0.5	Area C	25.4 (0)	-	-		-
-25	8/30/1995	0.2	0.5	Area C	[8.3 [3]	_	26.2 [3]	-	
S-1	8/30/1995	0.2	0.5	Unknown	36.9 (3)	-	-		
S-2	8/30/1995	0.2	0.5	Unknown	3.92 [3]		-		-
15-3	8/30/1995	0.2	0.5	Unknown	9.74 DI	_	-	- -,	-
IS-4	8/30/1995	0.2	0.5	Unknown	33.8 [3]		_	-	-
IS-5	8/30/1995	0.2	0,5	Unknown	19.7	-	-		•
IB-14	. 5/13/1996	0	1	Area C	7.81 (7)	-	-		-
IB-51	5/13/1996	- ÷	+	Arca C	a.el.el.54.3 attractive page 131				-
	5/15/1996		 	Area C	22.4 [3]	-	_		
IB-56		7 0	+	Area C	25.2 [3]		-	-	-
IB-58	5/13/1996	0	 	Area C	25.2 (3)	-	 		-
(B-61	5/13/1996			- Area C	98.8 (3)				-
HB-62	5/13/1996	0		Area C	97.6 [3]				
(B-83	5/13/1996		1 1	Area C	16.3 [3]		 	. ,	
(B-85	5/13/1996	0		Area C	10.5 147 here is been [3]				
1B-89	5/13/1996	0.	1 1		2009 147 200 04 100 DI		-		_
HB-98	5/15/1996	0		Area C	14 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		 		
HB-103	5/13/1996	- 0	1	Area C	24 march 04.4 (1870) (1871) (1871)				

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE FOOT BELOW GROUND SURFACE FORMER Cross and Cook Tambery Danvers, Mansachusetts

AS Number (if available)					7440-38-2	7440-43-9	7440-47-3	18540-29-9	7439-92-1
Sample ID	Sample Date		epth Interval	Area	Arzenic	Cadmium	Total Chromium	Hexavelens Chromoum	Lead
544PI 12		Too	Bottom -		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ang/kg)
VC-1	11/21/2006	0	1	Londfill Area A	30.0 [4]	-	262 U HI	14.9	
VC-2	11/21/2006		 	Landfill Area A	31.0 [4]		21Q U [4]	2.50 U	
VC-2	11/21/2006		- ; 	Landfill Area A	77.1 [3]		1070 \$ 25(4% [3]	. 2.50 U	
VC-3	11/21/2006	0	+ i 	Londfill Area A	. 14.0 U [4]		194 U [4]	2.50	43.0
VC-5	11/21/2006	0		Leadfill Area A	141,08)775-3625 [4]		2375	17.1	
VC-6	11/21/2006	0		Landfill Ares A	59.5 [3]		128 [3]	3.80	<u> </u>
WC-7	11/21/2006	0.	1 - 1	Lendfill Ares A	13.0 U [4]		2572 Conserve (4)	43.3	32.0
WC-8	11/21/2006	0	1	Londfill Area A	10.0 U [4]		14)	77.8	
WC-9	11/21/2006	.0.	1	Landfill Area A	83.5 (3)	<u> </u>	y 4 370 ·	17.4	
WC-10	11/21/2006	0	1 1	Landfill Area A	24.0 [4]		5889 × ×××× (4)	333	
WC-10	11/21/2006	0	1	Landfill Area A	209 (+ : [4]		135 U [4]	2,50 U	50.0
VC-12	11/21/2006	0	1	Landfill Area A	39 6 6 Carto ([4]		Had 1380 : 141	48.6	126
VC-13	11/21/2006	0		Lundfill Area B	96 Sept. 18 [4]		至3:26 683 (2) (14)	21.2	
VC-14	11/21/2006	0	1	Landfill Area B	41.4 (3)		264 (Company D)	27.7	
VC-15	11/21/2006	0	1	Landfill Area B	्रहाक्षेत्र 48 (ब्रह्म स्ट्रिक के स्ट्राप्त)		\$14.5327@16.5069 [4]	14.7	
WC-16	11/21/2006	0	1	Landfill Area B	© 9-169 (4)		17219 (25/25) [4]	. 2.50 U	38.0
ÑC-17	11/22/2006	0	ı	Lagoon Area C				5.50	
WC-18	11/22/2006	0	1	Lagoon Area C			<u> </u>	8.40	
VC-19	11/22/2006	0	1	Lagoon Area C		<u>`</u>		5,80	
WC-20	1 (/22/2006	0	1	Lagoon Area C				2.40 U	
WC-21	11/22/2006	0	1	Lagoon Area C				2.80 U	
WC-22	11/22/2006	0	1	Lagoon Area C				3.50	
WC-23 *	11/22/2006	. 0	1	Lagoon Area C	§ -	<u> </u>		2.60 U	
WC-24	11/22/2006	0	1	Lagoon Area C		· -		2.20 U	
WC-25	11/22/2006	0 .	1	Lagoon Area C	T -	-	<u> </u>	9,40	
WC-26	11/22/2006	0 /	1	Lagoon Area C			<u> </u>	2.70 U	
WC-27	11/22/2006	d.	1	Lagoon Area C	-	-		2.50 U	:
WC-28	11/22/2006	0,	1 1	Lagoon Area C		-	-	5.00	
WC-41	11/21/2006	0	1	Uplands	166 -27 22 [4]	<u> </u>	3457 3457	13.1	
WC-12	11/21/2006	0 -	1.	Uplands	12.8 [3]		22.2 [3]	2.10 U	
WC-43	11/21/2006	0	I	Uplands	31.0 HI	-	258 U [4]	2.40 U	
Number of Samples					67	1	30	31	6
Number of Detections					64	11	25	19	6
Arithmetic Mean Concent	(o)				46.0	0.745	854	. 22.9	61.3
					3.92	0.745	22.2	2.60	32.0
Minimum Detected Conce Maximum Detected Conc					209	0,745	5889	333	126
Maximum Detected Conc. Location of Maximum De					WC-11	Lagoon 1 Top	WC-10	WC-10	WC-12
⊔жими от Малания De	tected Concentration					60	200	200	NE

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE FOOD BELOW GROUND SURFACE Former Crease and Cook Tannery Dagvers, Messachusetts

CAS Number (if evailable):					7439-97-6	57-12-5	57-12-5	1746-01-6	40321-76-4
Sacapie ID	Sumple Date		pth Interval	Area .	Mercury	Cyrnide	PAC Cyenide	2,3,7,8-TCDD	1.2,3,7,8-P=CDD
		Тор	Bottom		(mg/kg)	(mg/kg)	(mg/kg)	(pg/g)	(pg/g)
Lagoon 1 Top	9/10/1986	0	0.5	Area C - Site Wide Arsenic	0.01 U	-	T	-	-
iS-I	7/21/1995	0	0.3	Area C	-	-	-		-
S-2	7/21/1995	0	0.3	Area C	-			-	
SS-3	7/21/1995	Ö	0.3	Ares C		_		_	-
SS-4	7/21/1995	0	0.3	Arta C	-	-		-	
\$-5	7/21/(995	C	0.3	Area C	-	_	-	_	·
SS-6	7/21/1995	0	0.3	Area C	_	_	_		-
2-1 -	8/30/1995	0.2	0.5	Area C			T	-	-
2-2	8/30/1995	0.2	0.5	Area C	-		1	-	
2-3	8/30/1,995	0.2	0.5	Area C	 	_			
3-4	8/30/1995	0.2	0.5	Area C		·	-	-	
5	8/30/1995	0.1	0.5	Area C			-		
2-6	8/30/1995	0.2	0.5	Area C				-	
2-7	8/30/1995	0.2	0.5	Area C	 		-		
C-8	8/30/1995	0.2	0,5	Area C	 			-	
2-9	8/30/1995	0.2	0.5	Area C	 				-
C-10	8/30/1995	0.2	0.5	Area C	 				-
2-11	8/30/1995	0.2	0.5	Area C	-		-		
3-12	8/30/1995	.0.2	0.5	Ares C	 	-			_
2-13	8/30/1995	0.2	0.5	Area C	-		-	-	
0-14	8/30/1995	0.2	0.5	Area C	-		 		
C-15	8/30/1995	0.2	0.5	Area C	-		 :		
	8/30/1995	0.1	0.5	Area C	 			<u>-</u> -	
C-17	8/30/1995	0.2	0.5	Area C		 	 		-
C-18	8/30/1995	0.2	0.5	Area C		····	 		
C-19	8/30/1995	.0.2	0.5	Area C		-			
C-20	8/30/1995	l _{0.2}	0.5	Area C	 		 	-	
C-21	8/30/1995	0.2	0.5	Area C	 		 	 	
C-22	8/30/1995	0.2	0.5	Area C			 		
C-23	8/30/1995	0.2	0.5	Area C	 		 		
C-24	8/30/1995	0.2	0.5	Area C	 	-	 		
C-25	8/30/1995	0.2	0.5	Area C	 		<u> </u>		
BS-I	8/30/1995	0.2	0.5	Unknowa					
BS-2	8/30/1995	0.2	0.5	Unknowa		-	 		
		0.2	0.5				ļ		
BS-3	8/30/1995	0.2	0.5	Unknows.	-		<u> </u>	<u>-</u>	
BS-4 BS-5	8/30/1995	0.2	0.5	Unknown	 	· · · · · · · · · · · · · · · · · · ·	ļ		
	8/30/1995			Unknown	 	<u> </u>	ļ. <u></u>		ļ
HB-14	5/13/1996	0	I I	Area C	 				ļ <u>"</u>
HB-51	5/13/1996	0	<u> </u>	Area C				-	-
HB-56	5/15/1996	0	1	Anta C	-				ļ ·
HB-58	5/13/1996	0	1 1	Area C .	-				<u> </u>
HB-61	5/13/1996	0	1	· Area C		-			<u> </u>
HB-62	5/13/1996	0	11	Area C			-		·
49-83	5/13/1996	0	1	- Ares C				·	<u> </u>
HB-85 -	5/13/1996	. 0	1	Ares C		`		-	
HB-89	5/13/1996.	0	1	Area C					
HB-98	: 5/15/1996	0	- I	Area C				<u></u>	
18-103	5/13/1996	0	1	Area C		-			

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE FOOD BELOW GROUND SURFACE FOURE Creus and Cook Tamery Danvers, Massachusetts

AS Number (if available)					7439-97-6	57-12-5	57-12-5	,1746-01-6	40321-76-4	<u>. </u>
Sample ID	Sample Date		epih laterval	Arta	Mercury	Cyanide	PAC Cyunide	2,3,7,8-TCDD	1,2,3,7,8-PeCI	DD
544A		Тар	Bottom		(mg/kg)	(mg/kg)	(mg/kg)	.(pg/g)	(pg/g)	
/C-1	11/21/2006	o		Landfill Area A		0.63 U		17.2	39.7	
/C-2	11/21/2006	0	1	Landfill Area A		0.61 U				
/C-3	11/21/2006	0	1 - 1	Landfill Area A	-	0.53 U		26.0	37.2	
VC-4	11/21/2006	0	1	Landfill Area A	T	0.47 U	0.49 U			
VC-5	11/21/2006	0 .	1	Landfill Area A	-	0.59 U		7.15	14.8	
VC-6	11/21/2006	0	1	Lendfill Area A		0.53 U			11.5	
VC-7.	11/21/2006	0.	1	Landfill Ares A		0.49 U		3.39		_
VC-8	11/21/2006	0	1	Londfill Area A		0.60 U		**		
VC-9	11/21/2006	. 0		Leadfill Ares A	-	0.55 U		-4.31	11.7	
VC-10	11/21/2006	0	1.	Lendfill Ares A		. 0.69 U		-	6.28	
VC-11	11/21/2006	0	L	Londfill Ares A	<u> </u>	0.61 U		0.54 A		
VC-12	11/21/2006	0	ı	Landfill Area A		0,55 Ü		5.68	6.86	
/C-13	11/21/2006	0	1	Landfill Area B	-	0.55 U				
/C-14	11/21/2006	0	1	Landfill Area B		0.56 U		<u> </u>		
/C-15	11/21/2006	0	1	Landfill Area B		0.53 U		4.40	11.0	
VC-16	11/21/2006	0	1	Landfill Area B		0.56 U		0.469 A	7.41	
VC-17	11/22/2006	0	- 1	Lagram Area C		0,54 U				
VC-18	11/22/2006	0	1	Lancon Area C		0.54 U		0.170 A [5]	1.89	_
WC-19	11/22/2006	0	1	Lagona Area C		0.52 U			1.89	<u>^</u> _
VC-20	11/22/2006	. 0		Lagoon Area C		0.58 U			0.965	2
WC-21	11/22/2006	0	1	Lagoon Area C		0.63 U			0.963	<u></u>
WC-22	11/22/2006	. 0	1	Lagoon Area C		0.55 U		· -	 	
WC-23 *	11/22/2006	0		Lagoon Area C	-	0.61 U		0.185 A [5]	0.932	
WC-24	11/22/2006	0		Lagoon Area C		0.50 U				
WC-25	11/22/2006	Q	1	Lagoon Area C		0.54 U		0,989	10.4	
WC-26	11/22/2006	. 0	1	Laguon Area C	-	0.62 U		ļ -	<u> </u>	
WC-27	11/22/2006	10	1	Laguon Area C	-	0.57 U		0.455 A	2.94	Α
WC-28	(1/22/2006	a	1	Lagoon Area C	-	0.60 U	0.59 U		-	
WC-41	11/21/2006	-	1	Uptuncis	-	0.84	-	26.6	23.1	<u> </u>
WC-42	11/21/2006	-	i	Uplands		0.50 U		0.127 U	0.286	<u> </u>
WC-43	11/21/2006	. 0	1	Uplands		0.55 U				^
Number of Samples						31	8	17	17	
Number of Detections					0	1	0	16	 	
Arithmetic Mean Concentre	lien (+)				מא	0.300	ND	6.14	11.7	
Minimum Detected Concern					ND	0.840	ND	0.170	0.286	
Maximum Detected Concer					ND	0,840	ND	26.6	39.7	
Location of Maximum Dete		7				WC-41		WC-41	WC-1	
Imminent Hazard Screening					300	, NE	100	NE	NE NE	

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE FOOT BELOW GROUND SURFACE FOTHER Crease and Cook Tennery Danvers, Massachusetts

CAS Number (if available)					39227-28-6	57653-85-7	19408-74-3	51207-31-9	. 57117-41-6
Sample ID	Sample Date		:pth Interval bgs)	Area	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7 8,9-HxCDD	2,3,7,8-TCDF	1,2,3,7,8-PeCDF
		Тор	Bottom		(Pg/g)	(pg/g)	(Pg/g)	(pg/g)	(pg/g)
ayoon I Top	9/10/1986	0	0.5	Area C - Site Wide Arsenic	1	_			
S-1	7/21/1995	0	0.3	Area C			-	-	-
S-2	7/21/1995	0	0,3	Area C	· · · · · ·				
S-3	7/21/1995	0	0.3	· Area C	1	· -			
s-4	7/21/1995	0	0.3	Area C	-	-	: -		
5-5	7/21/1995	0	0.3	Area C			_		
S-6	7/21/1995	0	0.3	Area C	-				
3-1	8/30/1995	0.2	0.5	Area C			- -		
-2	8/30/1995	0.2	0.5	Area C	-		-	-	
-3	8/30/1995	0.2	0.5	Area C			-		
-4	8/30/1995	0.2	0.5	Area C	-				
:-5	8/30/1995	0.2	0.5	Area C	-				
:-6	8/30/1995	0.2	0.5	Area C	-			-	T
.1	8/30/1995	0.2	Q.5	Area C	-	-	_	**	
:-8	8/30/1995	0.2	0.5	Area C	-	-			
.9	8/30/1995	0.2	0.5	Area C	-		_		
-10	8/30/1995	0.2	0.5	Area C	-	-			
-11	8/30/1995	0.2	0.5	Area C		-			
-12	8/30/1995	0.2	0.5	Area C				**	
-13	8/30/1995	0.2	0.5	Aren C	-			<u>-</u>	
-14	8/30/1995	0.2	0.5	Area C	-				1
-15	8/30/1995	0.2	0.5	Area C	_				T
-16	8/30/1995	0.2	0.5	Area C		-		••	
:-17	8/30/1995	0.2	0.5	Area C					
-18	8/30/1995	0.2	0.5	Area C	-		• ••		
-19	8/30/1995	0.2	0.5	Area C	1 -				
-20	8/30/1995	0.2	0.5	Area C ·	-		· _		
-21	8/30/1995	0.2	0.5	Area C					
-22	8/30/1995	0.2	0.5	Area C					
-23	8/30/1995	. 0.2	0.5	Ares C	1				
-24	8/30/1995	0.2	0.5	Area C					
-25	8/30/1995	0.2	0.5	Ares C.	-				
S-I	8/30/1995	0.2	0.5	Unknown	1				
S-2	8/30/1995	0.2	0.5	Unknown		·	٠	-	
S-3	8/30/1995	0.2	0.5	Unknown		••			
5-4	8/30/1995	0.2	0.5	Unknown	1				
S-3	8/30/1995	0.2	0.5	Unknown		-			
B-14	5/13/1996	0	1	Area C					
B-51	5/13/1996	0	1	Area C	· -				
B-56	5/15/1996	0		Area C	 				
8-58	5/13/1996	.0		AreaC					
B-61	5/13/1996	0	- 1	Arca C	-	-			
B-62	5/13/1996	0	1	Area C			_		
B-83	5/(3/1996	0.	3-	Area C					
B-85	5/13/1996	0.	1.	Area C	.				
B-89	5/13/1996	0.		Area C					·
B-98	5/15/1996	0	- i:	Area C					
B-103	5/13/1996	0		Area C			-	-	

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE FOOT BELOW GROUND SURFACE Former Cross and Cook Tannery Denvers, Massachuseits

					39227-28-6	57653-85-7	19408-74-3	51207-31-9	57117-41-6
AS Number (if available) Sample ID	Summite Date	Sample Dep		Area	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD		2,3,7,8-TCDF	1,2,3,7,8-P±CDF (pg/g)
Sauthe m	Januar Jan	Top	Bottom		(pg/g)	(pg/g)	(pg/g)	(pg/g)	
	11/21/2006	0	1	Landfill Area A	-84.8	1430	304	4.20 [7]	3.52 A
WC-1 WC-2	11/21/2006		1	Landfill Area A	-			3,70 [7]	3.40 A. [6]
WC-3	11/21/2006	0	1	Landfill Area A	126	1330	292		3,40 A. IVI
WC-4	11/21/2006	c	1	Landfill Area A				1.50	2.31 A [6]
WC-S	11/21/2006	ō	1	Landfill Area A	39.3	464	107	1.30	
WC-6	11/21/2006	0	1	Landfill Area A				1.33 [7]	3.39 A
WC-7	11/21/2006	0	1	Landfill Area A	21.2	345	69.9		337 1
WC-8	13/21/2006	0	i	Landfill Area A	-			1,56	2.05 A
WC-9	11/21/2006	o o	ı	Leadfill Area A	21.7	272	7.7.0		
WC-10	11/21/2006	0	1	Landfill Area A	-	-		1.61 (7)	1.29 A [3]
WC-10	11/21/2006	Ö	1	Landfill Area A	10.6	5) 155	38.3		1.29 A RI
WC-12	11/21/2006	0		Landfill Area A	T -				2.10 A
WC-13	11/21/2006	0	1	Landfill Area B	23.2	353	82.6	1.06	
WC-13 WC-14	11/21/2006			Landill Area 8		-			0.933 A
	11/21/2006	0	-	Landfill Area B	24.2	157	63.0	0.619 A	
WC-15	11/21/2006		 	Landfill Area B				<u> </u>	0.331 A
WC-16 WC-17	11/22/2006		 	Laguon Area C	8.83	5] [2]	38.1	0.587 A	
	11/22/2006	1 - 0 -	- 1 -	Lagoon Area C					0.138 A
WC-18	11/22/2006	 	 	Lagoon Area C	1.49 A	36.9	8.55	0.138 U	
WC-19	11/22/2006	 		Lagoon Area C	-				
WC-20	11/22/2006	0 .	 	Lagoon Area C	1.43 A	5] 4.01 A	2.95 A	1.50 (7)	0,889 A
WC-21	11/22/2006	0	 	Lagoon Area C		-			
WC-22			 	Laguon Area C	. 0.97 A	9.16	3.12 A	0.74 A	0.370 A
WC-23	11/22/2006	0	 -	Lagoon Area C			-	_	
WC-24	11/22/2006	0	 	Lagoon Area C	10.7	246	. 59.6	0.771 A	0.726 A 16
WC-25	11/22/2006	0	 	Lagoon Area C					
WC-26	11/22/2006	0		Lagoon Area C	1.76 A		8.65	0.818 A	0.511 A
WC-27	11/22/2006	0 1	1	Lagoon Area C	1.70				-
WC-28	11/22/2006	0	\ 	Unionds	109	2110	411	3,47 A	3.50 A
WC-41	11/21/2006	0	 		0,607 A	4.32	2,59 A	0.249 A	' 0.111 A
WC-42	11/21/2006	0		Uplands	0.564 A	1.27 A	1.29 A	0.951 [7]	0.387 A (6
WC-43	11/21/2006	0	1 1	Uplands		17	17	17	17
Number of Samples		·			17	17	17	16	17
Number of Detections					17				1.60
Arithmetic Mean Concentra	dison ^[a]	- · · · · · · · · · · · · · · · · · · ·	7.1		30.3	441	97.9	0.249	0.111
Minimum Detected Concen				1	0.564	2.17	1.29	4.20	3.52
Maximum Detected Concer			-		126	2110		WC-1	WC-1
Location of Maximum Dete					WC-3	WC-41	WC-41		
Imminent Hazard Screening	The second second second				NB	NE	NE	NE	NB

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE FOOT BELOW GROUND SURFACE Former Crease and Cook Tamery Denvers, Massachusetts

CAS Number (if available)					57117-31-4			l	
Sample ID	Sample Date		pth Interval		2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDI
запре ш	2 multie Date	Top	bgs) Bottom	A,rea	(pg/g)	(pg/g)	(Pg/g)	(pg/g)	(pg/g)
aguen I Top	9/10/1986	0.	0.5	Area C - Site Wide Arsenic		- 100		488	925
S-1-	7/21/1995	0	0.3	Area C	 	 			
S-2	7/21/1995	0	0.3	Area C	-	 			
S-3	7/21/1995	0	0_3	Area C					
S-4	7/21/1995	0	0.3	Area C				 	
S-5	7/21/1995	0	0.3	Area C		 			
S-6	7/21/1995	0	0.3	Area C	1	 		-	- · -
-1	8/30/1995	0.2	0,5	Area C	 	 	<u>-</u>	ļ	
-2	8/30/1995	0.2	0.5	Area C	 	 			
-3	8/30/1995	0,2	0.5	Area C					
:4	8/30/1995	0.2	0.5	Area C		-		-	-
-5	8/30/1995	0.2	0.5	Area C		 	<u> </u>	 	
-6	8/30/1995	0.2	0.5	. Area C		 	-	-	
-7	8/30/1995	0.2	. 0.5	Area C	 				
-8	8/30/1995	0.2	0.5	Area C		**			
.9	8/30/1995	0.2	0.5	Area C		-			
-10	8/30/1995	0.2	0.5	Area C	-				
-11	8/30/1995	0.2	0.5	Area C				 	
-12 (8/30/1995	0.2	0.5	Area C					
-13	8/30/1995	0.2	0.5	Area C	 	 			
-[4	8/30/1995	0.2	0.5	Arta C					
-15	8/30/1995	0.2	0.5	Area C	 				
-16	8/30/1995	0.2	0.5	Area C			-		
-17	8/30/1995	0.2	0.5	Area C					
-18	8/30/1995	0.2	0.5	Area C					
-19.	8/30/1995	0.2	0.5	Area C					
-20	8/30/1995	0.2	0.5	Area C		 			
-21	8/30/1995	0.2	0.5	Area C		ļ. -			
-22	8/30/1995	0.2	0.5	Area C					-
-23	8/30/1995	0.2	0.5	Area C	-				
-24	8/30/1995	0.2	0.5	Area C				<u> </u>	<u>-</u>
-25	B/30/1995	0.2	0.5	Arta C	 	-			
S-1	8/30/1995	0.2	0.5	Unknown				-	
S-2	8/30/1995	0.2	0.5		<u> </u>		<u> </u>	·-	-
S-3	8/30/1995	0.2	0.5	Unknown	<u> </u>	·			
S-4	8/30/1995	0.2	0.5	Unknown		·			
S-5	8/30/1995	0.2	0.5	Unknows				<u> </u>	
B-14	5/13/1996	0.2		Unknowa				-	
B-14 B-51	5/13/1996	0	1	Area C	<u> </u>				
B-56				AreaC		<u> </u>		. 	-
B-58	5/15/1996	0	-!	Area C	<u> </u>		-		
	5/13/1996	0		Arca C	 =				
B-61	5/13/1996	0.	1 1	Area C					-
B-62	5/13/1996	0	1	Area C				. •	
B-8.1	5/13/1996	0	!·	Area C			-		-
B-85	5/13/1996	0.		Area C	-	-		·	
B-89	5/13/1996	0		Area C		-:			- 4
B-98	5/15/1996	0	1.	- Area C	;	-			·, .
B-103,	5/13/1996	. 0-	/ 1	Area C		_			

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE FOOT BELOW GROUND SURFACE FORMER Crease and Cook Tannery Danvers, Massachusetts

AS Number (if available)		·			57117-31	1-4								
Sample ID	Sample Date	Sample De		Area	2,3,4,7,8-P	.]	1,2,3,4,7,8-H	ì	1,2,3,6,7,8-1	1	2.3,4,6,7,8-1 (P8/E		1,2,3,7,8,9-1 (pg/g)	
ample to	1 324,200	Top	Bottom		(pg/g)		(pg/g)	<u> </u>	(Pg/g)	,		'		
		0		Landfill Area A	16.2		120		50.1		454		14.3	
'C-1	11/21/2006	0		Landfill Area A	1				** :					
C-2	11/21/2006	0		Landfill Area A	12.0		102		43.6	[6]	321		13.7	
C-3	11/21/2006	0 .		Landfill Ares A			-						7.21	
°C-4	11/21/2006	0	- :	Landfill Area A	6.85		42.F		25.2		102		7.21	
rc-s	11/21/2006		1 1	Landfill Area A	-						 _		5.73	
/C-6	11/21/2006		i 1-	Landiil Area A	7.49		28.8		17.8		54.4		3.73	
fC-7	11/21/2006	- 0	- i - 	Lundfill Area A	-		· -						3.75	A
/C-8	11/21/2006	0		Landfill Ares A	4.69	A	25.7		16.8		67.1		3.13	
/C-9	11/21/2006	-	1	Landfill Area A					<u> </u>		41.9		2.52	A
/C-10 /C-1)	11/21/2006	0	1 1	Landfill Area A	4.23	^	15.2		8.68		41.9			
	11/21/2006	- 0	1	Landfill Area A							50.2		5.10	
VC-12 VC-13	11/21/2006		1	Landfill Area B	4.59		32.6		12.3		30.2		3.10	
/C-13 /C-14	11/21/2006		1 1	Lundiil Area B	-						37.8		1.90	
VC-14 VC-15	11/21/2006	- 0	1	Landfill Area B	. 2.87	A	10.6		7,60				1,70	
VC-16	11/21/2006	<u>_</u>		Landfill Area B							10.3		0.511	A
VC-16	11/22/2006	0	1	Lagoon Area C	0.812	. ^	3.68	. ^	2.88	^_	10.3		- 0.511	
WC-18	11/22/2006		1 1	Lagoon Area C			=_				. 2.27	A	0.235	Ā
WC-19	11/22/2006	0	1 1	Lagoon Area C	0.295		1.17		0.769	A [5]	. 4.41		-	
WC-20	11/22/2006	0	1	Lagoon Area C							1.65	Α	0.555	
WC-21	11/22/2006	G		L адина Агеа С	1.15		2.41		1.28	_ A				
WC-22	11/22/2006	0 .	1 1	Lagoon Area C					:					υ
	11/22/2006	0	1	Lagoon Area C	0.51	A (5)	0.86	A	0.62	<u> </u>	1.30		0,456	<u> </u>
WC-23 *	11/22/2006	0	 	Lagoon Area C			1						1,22	A
WC-24	11/22/2006	0	 	Lagoon Area C	1.95	A	8.56		. 6.06		22.3			
WC-25	11/22/2006		+	Lagoon Area C								 	0.518	U
WC-26	11/22/2006		. ;	Lagoon Area C	0.565	Α	0.737	A [5]	0.617	A (5)	0.691	A [5]		
WC-27	11/22/2006		(;)	Lugion Area C		_					<u> </u>		10.0	
WC-28	11/21/2006			Uplants	13.2	A	84.1		37.6	A	188		0.391	- û
WC-41	11/21/2006	0	+ 	Uplands	0.304	Α	0,443	A	1.42		0.830 2.67	 ^- -	0.325	- -
WC-42 WC-43	11/21/2006	0	1	Uplands	3.76	A	1.57	Α.	1.39	Α.			17	
	1112112000				17		17		.17		-17		14	
Number of Samples					17		17		17		17.			
Number of Detections					5.06		30.0		14.6		84.8		4.22	
Arithmetic Mean Concent					0.295		0.443		0.617		0.691		0.235	
Minimum Detected Conce					16.2		-120		50.1		454		14.3	
Maximum Detected Comp					WC-I		WC-I		WC-1		WC-I		WC-1	
Location of Maximum De	tected Concentration				WC-1		NE.		NE		NE		NE	

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE POOT BELOW GROUND SURFACE Former Crease and Cook Tannery Danvers, Massachusetts

AS Number (if available)					i .	1	}	3582-46-9		
Sample ID	Sample Dute	Sumple Depth Interval (ft bgs)		Arei	1,2,3,4,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	1,2,3,4,6,7,8-HpCDD	OCDD	
		Тор	Botturn		(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	
адооп 1 Тор	9/10/1986	0	0.5	Area C - Site Wide Arrenic	-	-	-		-	
S-1	7/21/1995	0	0.3	Area C	-		-	-		
S-2	7/21/1995	0	0.3	- Area C		-	- ,	-	-	
S-3	7/21/1995	0	0.3	Area C		-		-	-	
S-4	7/21/1995	0	0.3	Area C	1		-	_	•	
S-5	7/21/1995	0	0.3	Area C	-	-	-	_		
S-6	7/21/1995	. 0	0.3	Area C	-	_		-	-	
-1	8/30/1995	0.2	0.5	Area C	-	-			*	
2-2	8/30/1995	0.2	0.5	Area C	-	-	_		-	
-3	8/30/1995	0.2	0.5	Area C		-			-	
-4	8/30/1995	0.2	0.5	Area C	1	_	•	-	-	
-5	8/30/1995	0.2	0.5	Area C .	-	_		-		
-6	- 8/30/1995	0.2	0.5	Area C		_	-		-	
-7	8/30/1995	0.2	0.5	Area C	-		-		-	
-8	8/30/1995	0.2	0.5	Area C	-	_	-	-	~	
:-9	8/30/1995	0.1	0.5	Area C	:		-			
2-10	8/30/1995	0.1	0.5	Area C	:	_	_ ,			
-11	8/30/1995	0.2	0.5	Area C		-	-	-		
-12	8/30/1995	0.2	0.5	Area C	-	_	\	l		
-13	8/30/1995	0.2	0.5	Area C	-	-				
:-14	8/30/1995	0.2	0,5	Area C			-	-	-	
-15	8/30/1995	0.2	0.5	Area C	-		-			
2-16	8/30/1995	0.2	0.5	Area C		-				
:-17	8/30/1995	0.2	0,5	Area C	-	_	· · · <u>-</u>	-		
-18	8/30/1995	0.2	0.5	Area C	T	_			· -	
-19	8/30/1995	0.2	- 0.5	Area C	1	-		-		
-20	8/30/1995	0.2 ;	0.5	Area C	1		**	 		
2-21	8/30/1995	0.2	0.5	Area C	1	-			**	
:-22	8/30/1995	0.2	0.5	Ares C	1				_	
2-2.3	8/30/1995	0.2	0.5	Area C	 	1				
3-24	8/30/1995	0.2	0.5	Arcs C	1					
>25	8/30/1995	0.2 ·	0.5	Arex C	1		- .	-		
IS-1	8/30/1995	0.2	0.5	Unknown	 	 				
3S-2	8/30/1995	0.2	. 0.5	Unknown	 -	-		-		
S-3	8/30/1995	0.2	0.5	Unknown	-	1			-	
15-4	8/30/1995	0.2	0.5	Unknown		 				
IS-5	8/30/1995	0.2	0.5	Unknown			-	 :		
(B-14	5/13/1996	0	1	Алга С	 			-		
(B-51	5/13/1996	ő	-;	Area C	 			 		
B-56	5/15/1996	. 0	i	Area C	 		-			
B-58	5/13/1996	-0.	- : -	Area C	1		- -		······	
13-61	5/13/1996	0	 	Area C	 	 	- '			
IB-62	5/13/1996	. 0		Arta C	 					
B-83	5/13/1996	. 0		Ares C				ļ		
B-85	5/13/1996	0	 	Ares C	-			 		
B-89	5/13/1996	. 0		Area C				 		
B-98	5/15/1996	0	1	Area C						
B-103	. 5/13/1996	0	- 1	Area C	4			J		

TABLE 3 SUMMARY OF SOIL DATA ZERO TO ONE FOOT BELOW GROUND SURFACE Former Crease and Cook Tannery Danvers, Massachusetts

AS Number (if available)								3582-46-9	
Sample ID	Sample Date	Sample De	pth Interval	Area	1,2,3,4,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF :	. (2,3,4,6,7,8-HpCDD	OCDD (pg/g)
		Top	Bottom		(pg/g)	(Pg/g)	(pg/g)		
/C-1	11/21/2006	0	ī	Lundfill Area A	7010	142 A	30400	53400	502000 E
/C-2	11/21/2006	- 0	1	Landfill Area A			<u> </u>	<u> </u>	
/C-3	11/21/2006	ô	1	Landfill Area A	6760	146 A	24300	62500	683000 E
VC-4	11/21/2006	0	1	Landfill Area A		_ =		18800	218000 E
VC-S	11/21/2006	0	1	Landfill Area A	3350	109 A	11800		218000 E
VC-6	11/21/2006	0	1	Landfill Area A		 		12800	136000 E
VC-7	. 11/21/2006	0	1	Landfill Area A	1280	55.1	4230		
WC-8	11/21/2006	0	1	Landfill Area A		<u> </u>			98900 E
WC-9	11/21/2006	0	1 .	Landfill Area A	. 1490	53.3	4400	9530	
WC-10	11/21/2006	0	1 -	Landfill Arca A	1			<u> </u>	-
WC-11.	11/21/2006	0 .	1	Landfill Area A	1200	27.3	2470	4180 E	39500 E
WC-12	11/21/2006	. 0	1	Landfill Area A	·				-
WC-13	11/21/2006	0	1	Landfill Area B	776	33.1	. 1100	15200	158000
WC-14	11/21/2006	. 0	1	Landfill Area B					70700
WC-15	11/21/2006	0	1	Landfill Area B	319	16.7	306	6190	70700
WC-16.	11/21/2006	0	15	Landfill Aren B	- '				45300 E
WC-17	11/22/2006	0	. 1	Lugous Area C	259	9.73	374	4860	
WC-18	11/22/2006	0	1	Lagoos Area C				ļ <u>-</u>	13000 B
WC-19	11/22/2006	0	1	Lagoon Area C	69.1	3.93 A	173	1050	
WC-20	11/22/2006	0	1	Lagoon Area C					9230 E
WC-21	11/22/2006	9	1	Largoon Area C	25.4	1.74 A [5]	92.6	216	
WC-22	11/22/2006	0		Lagoon Area C					<u> </u>
WC-23 *	11/22/2006		1	Lagoon Area C	27.5	1.68 A (5)	76.8	335	5615 E
WC-24	11/22/2006		1.	Lagoon Area C		-			-
WC-25	11/22/2006	0	1 i	Lagoon Area C	537	25.1	-826	7630	94400 E
WC-25	11/22/2006	0	. 1	Lagoon Area C		-		<u> </u>	
WC-27	11/22/2006	0	Fi	Lagoon Area C	10.4	0.613 U	20.1	239	9730 E
WC-28	11/22/2006	D 1	1	Lagoon Area C			-		
WC-41	11/21/2006	0	1.	Uplands	3980	97.5	9890	94200	1180000 E
WC-42	11/21/2006	0	—	Upšanda	9.41	0.456 A	15.6	148	.1800
WC-43	11/21/2006	0	1	Uplands	11.4	0.453 A [5]	12.8	75.7	2040
Number of Sumples					17	17	17	- 17	17
Number of Detections					17	16	17	17	17
Arithmetic Mean Concentr	ntiest (e)			/	1693	45.1	5651	[8]89	203850
Minimum Detected Concer					9.41	0.453	12.8	75.7	.E800
Maximum Detected Conce					7010	146	30400	94200	1180000
Location of Maximum Den					WC-1	. WC-3	WC-1	WC-41	WC-41
imminent Hazard Screenin					NE	NE	NE	NB	NE

Table 3, Continued Summary of Soil Data

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

Notes:

ft bgs = feet below ground surface mg/kg = milligrams per kilogram. pg/g = picograms per gram. XRF = x-ray fluorescence

"-" = not analyzed.

NE = not established.

- [a] = Non-detected values assumed present at one-half the quantitation limit.
- 1. MCP 310 CMR 40.0321(2)(b)
- 2. Values greater than Imminent Hazard Screening Criteria are highlighted.
- 3. Laboratory data.
- 4. XRF data.
- 5. Estimated Maximum Possible Concentration
- 6. DPE = Indicates the presence of a peak in the polychlorinated diphenylether channel that could cause a false positive or an overestimation of the affected analyte(s).
- 7. Maximum value among initial run and diluted analysis applied.
- 8. Average among WC-23 and WC-101 (duplicate of WC-23) applied to assessment.
- A = Amount detected is less than the Lower Calibration Limit.
- U = Not detected at the presented laboratory reporting limit.
- Q = Indicates the presence of a quantitative interference.

 This situation generally results in an underestimation of the affected analytes.
- E = Amount detected is greater than the Upper Calibration Limit.

TABLE 4 SUMMARY OF SEDIMENT DATA Former Creese and Cook Tannery 25 Clinton Avenue Danyers, Massachusetts

AS Number (if available)				7440-38-2		7440-43-9	7440-47-	3	18540-29-9	7440-50-8
Sample ID	Sample Date	Sample Depth (ft bgs)	Sample Area	Arsenic (mg/kg)		Cadmium (lab data) (mg/kg)	Total Chromium (mg/kg)		Hexavalent Chromium (lab data) (mg/kg)	Copper (mg/kg)
HBTF-1	5/20/1996	0.5 - 1.5	Tidal Flats	15.2	[4]	\ <u>a</u>	86	[4]		
HBTF-2	5/20/1996	0.5 - 1.5	Tidal Flats	42.2	[4]		1370	[4]		
HBTF-3	5/20/1996	0.5 - 1.5	Fidal Flats	51.9	[4]		1140	[4]		
HBTF-4	5/20/1996	0.5 - 1.5	Tidal Flats	31.3	[4]	· · · · · · · · · · · · · · · · · · ·	599	[4]		
HBTF-5	5/20/1996	0.5 - 1.5	Tidal Flats	150	[4]		5390	[4]		
HBTF-6	5/20/1996	0.5 - 1.5	Tidal Flats	150	[4]		1600	[4]		
HBTF-7	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	66.3	[4]		3330	[4]	_	_
HBTF-8	7/29/1996 & 7/30/1996	0.5 - 1,5	Tidel Flats	119	[4]		3800	[4]		
HBTF-9	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	98.7	[4]		3130	[4]		
HBTF-10	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	111	[4]		2340	[4]		
HBTF-11	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	15.1	[4]		59.4	[4]		
HBTF-12	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	15.0	[4]		70,5	(4)		
I] Marsh-I	April 2005	0 - 1.5	Salt Marsh Area A	184	[4]				-	
11 Marsh-2	April 2005	0-1.5	Salt Marsh Area A	553	[4]					
11 Marsh-3	April 2005	0 - 1.5	Salt Marsh Area A	35,2	[4]				-	
1] Marsh-4	April 2005	0 - 1.5	Salt Marsh Area A	31.7	[4]					
1] Marsh-5	April 2005	0 - 1,5	Salt Marsh Area A	279	[4]				-	
l] Mersh-6	April 2005	0 - 1.5	Salt Marsh Area A	34	[4]	~				
I] Marsh-II	April 2005	0 - 1.5	Sult Marsh Area A	173	(4)	-			-	
1] Marsh-12	April 2005	0 - 1,5	Salt Marsh Area A	45,1	[4]					_
l] Marsh-7	. April 2005	0 - 1.5	Salt Marsh Area B .	65.7	[4]	-	-			
l] Marsh-8	April 2005	0 - 1.5	Salt Mursh Area B	79.5	(4)		-			
1] Marsh-9	April 2005	0 - 1.5	Salt Marsh Area B	66.2	(4)	**	-			_
I] Marsh-10	April 2005	0 - 1.5	Salt Marsh Area B	50	141		-			
l] Mud Flat-l	April 2005	0 - 1.5	Mud Flats	15.1	[4]				<u>-</u> '	
1] Mud Flat-3	April 2005	0 - 1.5	Mud Flats	12.6	[4]					
] Mud Flat-4	April 2005	0 - 1.5	Mud Flats	41.2	(1)		-			
I] Mud Flat-5	- April 2005	0 - 1.5	Mod Flats	105	(4)					
l] Mud Flat-6	April 2005	0 - 1.5	Mud Flats	50.9	[4]				-	
] Mud Flat-7	April 2005	0 - 1.5	Mud Flats	27.1	[4]		-	[
l] Dup-1 (Mud Flat-7)	April 2005	0 - 1.5	Mud Flats	31.5	[4]	-	-			
RR Bridge	May-84		Railroad Bridge	16.05	[4]	3.186 .	164.2	[4]		33.59
Steam Bridge	May-84		Steam Bridge	6,102	[4]	0.578	77.09	[4]		13,14

TABLE 4 SUMMARY OF SEDIMENT DATA Former Creese and Cook Tannery 25 Clinton Avenue Danvers, Massachusetts

CAS Number (if available)	AS Number (if available)						7440-4	7-3	18540-29		7440-50-8
Sample ID	Sample Date	Sample Depth	Sample Area	Arsenic		Cadmium (laḥ data)	Total Chromium		Hexavalent Chromium (lab data)		Copper
		(ft bgs)		(mg/k	g)	(mg/kg)	(mg/k	(g)	(mg/kg)	(mg/kg)
WC-SED-1	11/22/06	0 - 0.5	Crane River - salt marsh	99	[5]		399.	: [5]	7.7	υ	
WC-SED-2	11/22/06	0 - 0.5	Crane River - salt marsh	· 47·	[5]		309	[5]	7.3	U	
WC-SED-3	11/22/06	· 0 - Q.5	Crane River - mud flats	. 7	U [5]		91.9	[4]	3.8	U	
WC-SED-4	11/22/06	0 - 0.5	Crane River - salt marsh	- 16	(5)	-	174	[5]	10	U	
WC-SED-5	11/22/06	0 - 0.5	Crane River - salt marsh	. 12	[5]		125	U (5)	8.2	U	
WC-SED-6	11/22/06	0 - 0.5	Crane River - salt marsh	18	[5]		916		4.7	U	
WC-SED-7	11/22/06	0 - 0.5	Crane River - mud flats	12	U [5]		408,	[5]	3.9 .		· ·
WC-SED-8	11/22/06	0 - 0.5	Crane River - salt marsh	28	[5]	-	211	[5]	3.9	υ	
WC:SED-9	11/22/06	0 - 0.5	Crane River - mud flats	19	[5]	=	1710	[4]	4,8		
WC-SED-10	11/22/06	0 - 0.5	Crane River - selt marsh	15	(5)		581	[5]	6.3	υ	·
WC-SED-11	11/22/05	0 - 0.5	Crane River - mud flats	14	. U [5]		555	[5]	4.6		
WC-SED-12	11/22/06	0 - 0.5	Crane River - salt marsh	13	บเฦ		272	[5]	8.7	ับ	
WC-SED-13	11/22/06	0 - 0.5	Crane River - mud flats	14	[5]		512	[4]	3.6	ับ	
WC-SED-14	11/21/06	0 - 0.5	Crane River - salt marsh	13	U [5]		335	[5]	6.7	U	
WC-SED-15	11/21/06	0 - 0.5	Crane River - salt marsh	59	[5]	· -	906	[5]	3.3	U	
WC-SED-16	11/21/06	0 - 0.5	Crane River - salt marsh	. 73	[5]		1320	[4]	114		
WC-SED-17	11/22/06	0 - 0.5	Crane River - mud flats	8	U [5]		. 120	U [5]	3,8	U	
WC-SED-18	11/21/06	. 0 - 0.5	Crane River - salt marsh	18	[5]	'	445	[4]	- 11	U	
WC-SED-19	11/22/06	0 - 0.5	Crane River - mud flats	17	U [5]		216	U [S]	2.8	U	
WC-SED-20	11/21/06	0 - 0.5	Crane River - salt marsh	51	[5]		682	[5]	19.9		
lumber of Samples				. 46		2	34		20		2
lumber of Detections						2	31		5		2
rithmetic Mean Concentration	on (•)			61.9	-	0.882	. 977		9.66		23:4
Minimum Detected Concentra	6.10		0.578	59.4		3,90		13.1			
faximum Detected Concentr	ation			553		1.19	5190		114		33.6
ocation of Maximum Detect	ed Concentration			Marsh-2		RR Bridge	HBTF-5		WC-SED-16		RR Bridge

Footnates:

It has = feet below ground surface

mg/kg = milligrams per kilogram,

pg/g = picograms per gram.

XRF = x-ray fluorescence

- "-" not analyzed.
- [s] = Non-detected values assumed present at one-half the quantitation limit.
- 1. Data transcribed from Table 3 within the June 6, 2005 Limited Assessment report prepared by Geologic Field Services, Inc. (GFS).
- 2. Data transcribed from Table 10 within the October 3, 1996 Final Site Inspection Prioritization Report prepared by Stone & Webster Environmental Technology & Services (prepared for the United States Environmental Protection Agency - New England Office of Site Remediation and Restoratio
- 3. Data transcribed from the River Sediment Analysis summery table within the May 1984 Engineering Report for Danversport Tunning Co. prepared by SP; Inc.
- 4. Laboratory data.
- 5. XRF data.
- 6. Estimated Maximum Possible Concentration
- 7. Maximum value among initial run and diluted analysis applied:
- A = Amount detected is less than the Lower Calibration Limit.
- U = Not detected at the presented laboratory reporting firmit.

Q-1210667 Oreherd Farm Trust - Framer Crosse and Cook briphRA Status World Crosse and Cook Sodiment Data xis

- Q = Indicates the presence of a quantitative interference.
- This situation generally results in an underestimation of the affected analytes
- E = Amount detected is greater than the Upper Calibration Limit.

TABLE 4
SUMMARY OF SEDIMENT DATA
Former Creese and Cook Tannery
25 Clinton Avenue
Danvers, Massachusetts

CAS Number (if available)				57-12-5	57-12-5	7439-92-1	7439-97-6	7440-02-0	7440-66-6
Sample ID	Sample Date	Sample Depth	Sample Area	Cyanide (lab data)	PAC Cyanide	Lead	Mercury (lab data)	Nickel (lab data)	Zinc 1 (lab data)
		(ft bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
HBTF-1	5/20/1996	0.5 - 1.5	Tidal Flots	-	-				
HBTF-2	5/20/1996	0.5 - 1.5	Tidal Flats	-	-			-	
HBTF-3	5/20/1996	0.5 - 1.5	Tidal Flats		-	`		<u> </u>	
HBTF-4	5/20/1996	0.5 - 1.5	Tidal Flats						<u> </u>
HBTF-5	5/20/1996	0.5 - 1.5	Tidal Flats			-			<u> </u>
HBTF-6	. 5/20/1996	0.5 - 1.5	Tidal Flats			-		<u> </u>	<u> </u>
HBTF-7	7/29/1996 & H30/1996	0.5 - 1.5	Tidal Flats						<u> </u>
HBTF-8	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats			-			
HBTF-9	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats			-			
HBTF-10	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats			-	<u> </u>	<u> </u>	<u> </u>
HBTF-!1	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidel Flats		-		-		
HBTF-12	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats			-			<u> </u>
[1] Marsh-I	April 2005	0 - 1.5	Salt Marsh Area A			-			
11 Marsh-2	April 2005	0 - 1.5	Salt Marsh Area A	-					
III Marsh-3	April 2005	0 - 1.5	Salt Marsh Area A						
11 Marsh-4	April 2005	0 - 1.5	Salt Marsh Area A			-		-	<u> </u>
11) Marsh-5	April 2005	0 - 1.5	Salt Marsh Area A	-		,		-	
11 Marsh-6	April 2005	0 - 1.5	Salt Marsh Area A	-	-		<u>-</u>		
[]] Marsh-11	April 2005	0 - 1,5	Salt Marsh Area A	-			<u> </u>		
El Marsh-12	April 2005	0-1.5	Salt Marsh-Area A						<u> </u>
[1] Marsh-7	April 2005	0 - 1.5	Saft Marsh Area B	-					<u> </u>
[1] Marsh-8	April 2005	0 - 1.5	Salt Marsh Area B		_		-	<u> </u>	<u></u>
[1] Marsh-9	April 2005	0 - 1.5	Sait Marsh Area B			-	-	<u> </u>	
[1] Marsh-10	April 2005	0-1.5	Salt Marth Area B		· · - · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>	J
[1] Mud Flat-I	April 2005	0 - 1.5	Mud Flats	-				ļ. 	<u> </u>
[3] Mud Flat-3	April 2005	0 - 1.5	Mud Flats	-	-			<u> </u>	
[1] Mud Flat-4	April 2005	0 - 1.5	Mud Fints	-					
[1] Mud Flat-5	April 2005	0 - 1.5	Mud Flats						
I Mud Flat-6	April 2005	0 - 1.5	Mud Flats		-	-	<u> </u>		
III Mud Flat-7	April 2005	0 - 1.5	Mud Flats			-	••		
[1] Dup-1 (Mud Flat-7)	April 2005	0 - 1.5	Mud Flats			-	<u> </u>		
31 RR Bridge	May-84		Railroad Bridge			119.4 [4]		12.75	140.4
[3] Steam Bridge	May-84		Steam Bridge			66.54 [4]	2,094	5.625	133,2

CAS Number (if available)	·			57-12-5	57-12-5	7439-92-1		7439-97-6	7440-02-0	7440-66-6
Sample 1D	Sample Date	Sample Depth	Sample Area	Cyanide (lab data)	PAC Cyanide	Lead		Mercury (lab data)	Nickel (lab data)	Zinc (lab-data)
		(ft bgs)	·	(mg/kg)	(mg/kg)	(mg/kg)	1	(mg/kg)	(mg/kg)	(mg/kg)
WC-SED-1	11/22/06	0-0.5	Crane River - salt marsh	t U	-	76	រេ			
WC-SED-2	11/22/06	0 - 0.5	Crane River - salt marsh	0.68 U	-	84	[5]		<u> </u>	
WC-SED-3	11/22/06	0 - 0.5	Crane River - mud flats	0.45 U		19	[5]			-
WC-SED-4	11/22/06	0 - 0.5	Crane River - salt marsh	1.1 U	1.1 L	62	[5]		<u> </u>	
WC-SED-5	11/22/06	0 - 0.5 -	Crane River - salt marsh	0.94 U		. 63	[5]			
WC-SED-6	11/22/06	0 - 0,5	Crane River - salt marsh	0.54 U		83	15]	-		
WC-SED-7	11/22/06	0 - 0.5	Crane River - mud flats	0.62 U		. 73	[5]			
WC-SED-8	11/22/06	0 - 0.5	Crane River - salt marsh	0.68 U	0.71 l	82	153		-	<u> </u>
WC-SED-9	11/22/06	0 - 0,5	Crane River - mod flats	0.73 U	-	107	[5]			
WC-SED-10	11/22/06	0 - 0.5	Crane River - salt marsh	0.79 U	-	63	[5]	-		
WC-SED-11	11/22/06	0 - 0.5	Crane River - mud flots	0.63 U	-	75	[5]			
WC-SED-12	11/22/06	0 - 0,5	Crane River - salt marsh	0.89 U	0.92 t	J 51 ′	[5]			
WC-SED-13	11/22/06	0 - 0,5	Crane River - mud flats	. 0.77 U	-	20	15]			<u> </u>
WC-SED-14	11/21/06	0 - 0.5	Crane River - salt marsh	0.85 U		- 54	[5]		<u> </u>	<u> </u>
WC-SED-15	11/21/06	0 - 0.5	Crane River - salt marsh	0.5 U		. 78	[5]			
WC-SED-16	11/21/06	. 0 - 0.5	Crane River - salt marsh	0.54 U		95	_ISJ	<u> </u>		
WC-SED-17	11/22/06	0 - 0.5	Crane River - mud flats	0.55 U		17	· [5]	:		
WC-SED-18	11/21/06	0 - 0.5	Crane River - salt marsh	1.3 U		34	[5]			ļ
WC-SED-19	11/22/06	0 - 0.5	Crane River - mud flats	· 0.59 U		47	[5]			
WC-SED-20	11/21/06	0 - 0.5	Crane River - salt marsh	0,61 U	0.45 t	50	[5]	_		
Number of Samples				20	5	22		2	2	2
Number of Detections				0.	0	22		2	2	2
Arithmetic Mean Concentration	[=]	•		ND	ND ND	64.5 .		3.75	9.19	137
Minimum Detected Concentration						17.0		2.09	5.63	133
Maximum Detected Concentrati	· · · · · · · · · · · · · · · · · · ·				ND	119	انـــــــــــــــــــــــــــــــــــــ	5.41	12.8	140
Location of Maximum Detected				-	- 1. 1	. RR Bridge	-I	RR Bridge	RR Bridge	RR Bridge

it bgs = feet below ground surface

nig/kg = milligrams per kilogram.

pg/g = picograms per gram.

XRF = x-rny fluorescence

- = not analyzed.
- [a] = Non-detected values assumed present at one-half the quantitation limit.
- 1. Date transcribed from Table 3 within the June 6, 2005 Limited Assessment report prepared by Geologic Field Services, Inc. (GFS).
- 2. Data transcribed from Table 10 within the October 3, 1996 Fund Site Inspection Prioritization
- Report prepared by Sione & Webster Environmental Technology & Services (prepared for the United States Environmental Protection Agency - New England Office of Site Remediation and Restorate
- 3. Data transcribed from the River Sediment Analysis summary table within the May 1984?
- Engineering Report for Danversport Touring Co. prepared by SP, Inc. 4. Laboratory data.
- 5. XRF data.
- 6. Estimated Maximum Possible Concentration:
- 7. Maximum value among initial run and diluted analysis applied.
- A = Amount detected is less than the Lower Calibration Limit.
- U = Not detected at the presented laboratory reporting limit. Q = Indicates the presence of a quantitative interference.
- This situation generally results in an underestimation of the affected analytes.
- E = Amount detected is greater than the Upper Calibration Limit.

CAS Number (if available)				1746-01-6	40321-76-4	39227-28-6	57653-85-7	19408-74-3	51207-31-9
Sample ID	Sample Date	Sample Depth	Sample Area	2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3;6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	2.3,7,8-TCDF
		(ft bes)	•	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)
HBTF-I	5/20/1996	0.5 - 1.5	Tidal Flats	-	_	-	_	-	
HBTF-2	5/20/1996	0.5 - t.5	Tidal Fints		-		_		
HBTF-3	5/20/1996	0.5 - 1.5	Tidal Flats	****		**************************************	7 S. 2 S. 5 S.		
нвт7-4	5/20/1996	0.5 - 1.5	Tidal Flats			_			
HBTF-5	5/20/1996	0,5 - 1.5	Tidal Flats	-					
HBTF-6	5/20/1996	0.5 - 1.5	Tidal Flats	-	-			-	
HBTF-7	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats		-	-			
HBTF-8	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats		-				
HBTF-9	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	-		-			
HBTF-10	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	_	-	-	-		<u></u>
HBTF-11	7/29/1996 & 7/30/1996	0.5 - 1,5	Tidal Flats	-	-	-		<u> </u>	
HBTF-12	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	-	-	-	-		
[1] Marsh-1	April 2005	0 - 1.5	Salt Marsh Area A	_	-				
[1] Marsh-2	April 2005	0 - 1.5	Salt Marsh Area A	-					
[1] Marsh-3	April 2005	0 - 1.5	Salt Marsh Area A		-	-	-	<u> </u>	
III Marsh-4	April 2005	0 - 1.5	Sait Marsh Area A		·	-			<u>-</u>
[1] Marsh-5	April 2005	0 - 1.5	Sait Marsh Area A	· -					
117 Marsh-6	April 2005	0 - 1.5	Salt Marsh Area A						
[1] Marsh-11	April 2005	0 - 1.5	Salt Marsh Area A		-				
VII Marsh-12	April 2005	0 - 1.5	Salt Marsh Area A		_		-		
[1] Marsh-7	April 2005	0 - 1.5	Sait Marsh Area B			-		<u> </u>	-
[1] Marsh-8	April 2005	0 - 1.5	Salt Marsh Area B		_		-	<u> </u>	
11 Marsh-9	April 2005	0 - 1.5	Salt Marsh Area B			-		-	
[1] Marsh-10	April 2005	0 - 1.5	Salt Marsh Aren B	_					-
[1] Mud Fint-1	April 2005	0 - 1.5	Mud Flats	_	-		<u> </u>	<u> </u>	
[1] Mud Flat-3	April 2005	0 - 1.5	Mud Flats	_					
[1] Mud Flat-4	April 2005	0 - 1.5	Mud Flats	-	-			-	<u> </u>
[1] Mud Flat-5	April 2005	0 - 1.5	Mnd Flats	 .	-		-	<u> </u>	
[1] Mud Flot-6	April 2005	0 - 1.5	Mud Flats		-	l	·		
[1] Mud Flat-7	April 2005	0 - 1,5	Mud Flats						
[1] Dup-1 (Mud Flat-7)	April 2005	0 - 1.5	Mud Flats	-			-	-	·
[3] RR Bridge	May-84		Railroad Bridge					· -	
[3] Steam Bridge	May-84		Steam Bridge		-	-			

		· · · · · · · · · · · · · · · · · · ·		1746-01-6	40321-76-4	39227-28-6	57653-85-7	19408-74-3	51207-31-9
CAS Number (if available) Sample ID	Sample Date	Sample Depth	Sample Area	2,3,7,8-TCDD	1,2,3,7,8-PaCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	2,3,7,8-TCDF
]		(ft bgs)		(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)
WC-SED-1	11/22/06	0-05	Crane River - salt marsh	4.78	18,4	22.5	224	81.0	11.4
WC-SED-2	11/22/06	0 - 0.5	Crane River - salt marsh	<u></u>				0.947 A	0,596 A
WC-SED-3	11/22/06	0 - 0.5	Crane River - mud flats	0.130 A [6]	0.286 A [6]	0.434 A.	0.906 A		13.8 [7]
WC-SED-3	11/22/05	0 - 0.5	Crane River - sult marsh	1.93	10.5 A [6]	17.8 A	90.7	40.4	171
WC-SED-5	11/22/06	0 - 0,5	Crane River - salt marsh					54.1	20.6 [7]
WC-SED-6	11/22/06	0 - 0,5	Crane River - salt marsh	6.44 Q	14.2	29.3	133		- 10.0
. WC-SED-7	11/22/06	0 - 0.5	Crane River - mud flats						
WC-SED-8	11/22/06	0 - 0.5	Crare River - salt marsh				70.1	35.1	10.2
WC-SED-9	11/22/06	0 - 0.5	Crane River - mud flats	2.64 Q	7.63 A [6]	12.9		33.1	
WC-SED-10	11/22/06	0 - 0.5	Crane River - salt marsh	·					
WC-SED-11	11/22/06	0 - 0,5	Crane River - mud flats				67.5	32.7	10.9 17
WC-SED-12	11/22/06	0 - 0.5	Crane River - salt marsh	2.81 A	7.45 A	10.9 A	2.25 A	2.14 A	0.794 OA
WC-SED-13	C 0 11/22/06 -	0 - 0.5	Crarte River - mud flats	. · 0.137 QA [6]		0.827 A			
WC-SED-14	11/21/06	0 - 0.5	Crane River - salt marsh				-		
WC-SED-15	11/21/06	0 - 0.5	Crane River - salt marsh		71.4 O	49.5 (6)	276	107	16,7 [7
WC-SED-16	11/21/06	0 - 0.5	Crane River - salt marsh	5.61 · Q	21.7				
		. co. co. 0 -0:5::	Crane River - mud flats	**		,,, , ,		_	
WC-SED-18	11/21/06	0 - 0.5	Crane River - salt marsh		2.28 QA	5,07 A (6)	17.6	9.88	3,38 . [7
WC-SED-19	11/22/06	0 - 0.5	Crane River - mud flats	1.02 QA	6.07 OA	10.6	42.4	13.7	2.85 [7
WC-SED-20	11/21/06	0 - 0.5	Crane River - salt marsh			10	10	10	10
Number of Samples				10	10	10	10	10	10
Number of Detections				10				37.7	9,12
Arithmetic Mean Concentratio	(A)	•		3.28	8.87	16.0	92.4 0.906	0.947	0.596
Minimum Detected Concentra				0.130	0.286	0,434	276	107	20,6
Maximum Detected Concentre				6.44	21.4	49.5		WC-SED-16	WC-SED-6
Location of Maximum Detecte				WC-SED-6	WC-SED-16	WC-SED-16	WC-SED-16	NC-SED-10	110000

Footnotes

It bgs = feet below ground surface

mg/kg = milligrants per kilogram. pg/g = picograms per gram.

XRF = x-ray fluorescence

"--" = not analyzed.

- [a] = Non-detected values assumed present at one-half the quantitation limit.
- Data transcribed from Table 3 within the June 6, 2005 Limited Assessment report prepared by Geologic Field Services, Inc. (GFS).
- 2. Data transcribed from Table 10 within the October 3, 1996 Final Site Inspection Prioritization
 Report prepared by Stone & Webster Environmental Technology & Services (prepared for the
 United States Environmental Protection Agency New England Office of Site Remediation and Restoration.
- Data transcribed from the River Sediment Analysis summary table within the May 1984 Engineering Report for Denversport Taming Co, prepared by SP, Inc.
- 4. Laboratory data.
- 5. XRF.data.
- 6. Estimated Maximum Possible Concentration
- 7. Maximum value among initial run and diluted analysis applied.
- A = Amount detected is less than the Lower Calibration Limit.
- U = Not detected at the presented laboratory reporting limit,
- Q = Indicates the presence of a quantitative interference.
 This situation generally results in an underestimation of the affected analytes:
- E = Amount detected is greater than the Upper Calibration Limit.

QA: KA/AB Dnie; 12/22/06

			· · · · · · · · · · · · · · · · · · ·						
CAS Number (if available)			<u> </u>	57117-41-6	57117-31-4				
Sample ID	Sample Date	Sample Depth	Sample Area	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,5,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF
<u> </u>		(ft bgs)		(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)
HBTF-I	5/20/1996	0.5 - 1.5	Tidal Flats			-		_	
HBTF-2	5/20/1996	0.5 - 1.5	Tidal Flats						_
HBTF-3	5/20/1996	0.5 - 1.5	Tidal Flats					-	
HBTF-4	5/20/1996	0.5 - 1.5	Tidal Flats			-			-
HBTF-5	5/20/1996	0.5 - 1.5	Tidal Flats				-		**
HBTF-6	5/20/1996	0.5 - 1.5	Tidal Flats	_	_			_	
HBTF-7	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats						_
HBTF-8	7/29/1996 & 7/30/1996	.0.5 - 1.5	Tidal Flots						_
HBTF-9	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	_	-	-	-	_	-
HBTF-10	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	_				_	_
HBTF-11	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats			-			
HBTF-12	7/29/1996 & 7/30/1996	0,5 - 1,5	Tidal Flats		-	_	_		
[1] Marsh-1	April 2005	. 0 - 1.5	Salt Marsh Area A			-			l
[1] Marsh-2	April 2005	0 - 1,5	Sait Marsh Area A				-		
[1] Marsh-3	April 2005	0 - 1.5	Salt Marsh Area A		-		_		
[1] Marsh-4	April 2005	0 - 1.5	Salt Marsh Area A			-			
[1] Marsh-5	April 2005	0 - 1.5	Salt Marsh Area A	_	_				
[1] Marsh-6	April 2005	0 - 1.5	Salt Marsh Area A		_	-			
[]] Marsh-1[April 2005	0 - 1,5	Salt Marsh Area A	-					-
[1] Marsh-12	April 2005	0 - 1.5	Salt Marsh Area A		_				
[1] Mwsh-7	April 2005	0 - 1.5	Salt Marsh Area B	-		,	_		-
[1] Marsh-8	April 2005	0 - 1.5	Salt Marsh Area B	_			_ ` ` ` ` `	_	_
[1] Marsh-9	April 2005	0 - 1.5	Salt Marsh Area B		=	_	-		
[1] Marsh-10	April 2005	0 - 1.5	Salt Mersh Area B	-	-	-	_	_	-
[1] Mud Flat-1	April 2005	0 - 1.5	Mud Flats		-	-	_	_	-
[1] Mud Flat-3	April 2005	0 - 1.5	Mud Flats	<u> </u>		-	-	-	
1] Mud Flat-4	April 2005	0 - 1.5	Mud Flats		_	-	_ :::::::::::::::::::::::::::::::::::::		-
[1] Mud Flat-5	April 2005 .	0 - 1.5	Mud Flats	_			_	-	-
[1] Mud Flat-6	April 2005	0 - 1.5	Mud Flats	_	~			-	-
[1] Mud Flat-7	April 2005	0 - 1.5	Mud Flats	-	- '			_	_
[1] Dup-1 (Mud Flat-7)	April 2005	0 - 1.5	Mud Flats .	-	-	-		-	
[3] RR Bridge	May-84		Railroad Bridge	_		-		-	
[3] Steam Bridge	May-84		. Steam Bridge						

				57117-41-6	57117-31-4	* O O			
AS Number (if available) Sample ID	Sample Date	Sample Depth	Sample Area	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF
Sample ID	54 .	[]		(==(a)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)
		(ft bgs)		(pg/g)	17.7	36.1	24.1	55.0	6.15 A
WC-SED-1	11/22/06	0 - 0.5	Crane River - salt marsh	5.26 A		70.1			
WC-SED-2	11/22/06	0 - 0.5	Crene River - salt marsh		0.264 A	0.286 A	0,233 A	0,298 A [6]	0.776 U
WC-SED-3	11/22/06	0 - 0.5	Crane River - mud flats	0.177 A	13.7 A	16.3 A	12.7 A	. 21.5	2.68 A.
WC-SED-4	11/22/06	0 - 0.5	Crane River - salt marsh	. 3.61 A	 			-	
WC-SED-5	11/22/06	0 - 0,5	Crane River - salt marsh	921 OA	35,3 Q	48.5	28.5	46.2	5.72 A
WC-SED-6	11/22/06	0 - 0.5	Crane River - salt marsh						
WC-SED-7	11/22/06	0 - 0.5	Crane River - mud flats		 		-		
WC-SED-8	11/22/06	0 - 0.5	Crane River - salt march	3.93 · OA	13.3 Q	16,7	13.0	22.0	3.12 A
WC-SED-9	11/22/06	0 - 0.5	Crane River - mud flats		133			_	·
WC-SED-10	11/22/06	0 - 0.5	Crane River - salt marsh	 ::-	 	-	-	, -	
WC-SED-11	11/22/06	0 - 0.5	Crane River - mud flats	3.26 A	10.6 A	14.2 A	10.7 A	18.4	2.61 A
WC-SED-12	11/22/06	0 - 0.5	Crane River - salt marsh		0.577 QA	0.617 A	. 0,527 A	0.732 A	0.127 A
WC-SED-13	11/22/06	0 - 0.5	Crane River - mud flats		0.517 0/2		1	T	
WC-SED-14	11/21/06	0 - 0.5	Crane River - salt marsh		 	-			-
WC-SED-15	11/21/06	0 - 0.5	Crane River - salt marsh	9,37 QA	47.6 Q	71.4	47.9	73.2	9.08 A
WC-SED-16	11/21/06	0 - 0.5	Crane River - salt marsh			 			
WC-SED-17	11/22/06	0 - 0.5	Crane River - mud flats				_	· -	
WC-SED-18	11/21/06	0 - 0.5	Crane River - salt marsh	1.27 QA	5.06 QA	5.I5 A	3.89 A	6.47	0.974 A
WC-SED-19	11/22/06	0 - 0.5	Crane River - mud flats	1:35 QA	3,61 QA	5.89 A	4.14 A	8.61	1.35 A
WC-SED-20	11/21/06	0 - 0,5	Crane River - salt marsh		10	10	10	10	10
umber of Samples				10	10	10	10	10	9 .
umber of Detections							14.6	25.2	3,22
rithmetic Mean Concentration	[4]			3,77	14.8	21.5 0.286	0.233	0,298	0.127
inimum Detected Concentrati	ion			0.177	0.264	71.4	47.9	73.2	9,08
ximum Detected Concentrati				9.37	47.6		WC-SED-16	WC-SED-16	WC-SED-16
cation of Maximum Detected				WC-SED-16	WC-SED-16	WC-SED-16	1 40000-10	1	

Footnotes:

It bgs = feet below ground surface

mg/kg = milligrams per kilogram.

pg/g = picograms per gram.

XRF = x-ray fluorescence

".." = not analyzed.
[n] = Non-detected values assumed present at one-half the quantitation limit.

- Non-detected values assumed present at one-half the quantitation finite
 Data transcribed from Table 3 within the June 6, 2005 Limited Assessment report prepared by
- Geologie Field Services, Inc. (GFS).

 2. Dala transcribed from Table 10 within the October 3, 1996 Final Site Inspection Prioritization Report prepared by Stone & Webster Environmental Technology & Services (prepared for the United States Environmental Protection Agency New England Office of Site Remediation and Restoration
- Data bases the drom the River Sediment Analysis summary table within the May 1984-Engineering Report for Danversport Taming Co. prepared by SP, Inc.
- 4. Laboratory date.
- 5. XRF data:
- 6: Estimated Maximum Possible Concentration-
- 7. Maximum value among initial run and diluted analysis applied:
- A = Amount detected is less than the Lower Calibration Limit.
- U = Not detected at the presented laboratory reporting limit.
- Q = Indicates the presence of a quantitative interference.
- This situation generally results in an underextimation of the affected analytes.
- E = Amount detected is greater than the Upper Calibration Limit.

QA: KA/AB Date: 12/22/06

· Sample ID	1 _			 				3582-46-9	<u> </u>	
Sample (I)	Sample Date	Sample Depth	Sample Area	1,2,3,4,7,8-HpCDF	1,2,3,4,7,8,9-14	lpCDF	OCDF	1,2,3,4,6,7,8-HpCDD	OCI	
WC-SED-1		(ft bgs)	_{	(P8/8)	((-)			1 ' ' 1		,,,
WC-SED-2	11/22/06	0 - 0.5	Crane River - salt marsh	1040	(pg/g)		(pg/g)	(pg/g)	(pg/	/g)
WC-SED-3	11/22/06	. 0 - 0.5	Crane River - salt marsh	1040	48.8		2180	4880	36300	E
WC-SED-4	11/22/06	0 - 0.5	Crane River - mud flats				-	_		
WC-SED-5	11/22/06	0 - 0.5	Crane River - salt marsh	2.71 A		U	1.75 A	40.2	2040	
WC-SED-6	11/22/06	0 - 0.5	Crane River - salt marsh	304	12.8	A	680	2180	17300	E
WC-SED-7	11/22/06	0 - 0.5	Crane River - salt marsh	818			_		11300	
WC-SED-7	11/22/06	0 - 0,5	Crane River - mud flats		31.1		I300	2690	20000	E
WC-SED-8	11/22/06	0 - 0.5	Crane River - salt marsh	ļ			_	1	20000	
	11/22/06	0 - 0.5	Crane River - mid flats				-			
WC-SED-10	11/22/06	0 - 0.5	Crane River - salt marsh	352	16.1		699	1700	14200	E
WC-SED-11	11/22/06	0 - 0.5	Crane River - mud flets	1	<u> </u>					
WC-SED-12	11/22/06	0 - 0.5	Crane River - salt marsh	1			_			
WC-SED-13	11/22/06	0 - 0.5	Crane River - mud flats	318	12.7	A	512	1640	13200	
WC-SED-14	11/21/06	0 - 0.5		8.12	0.425	A	10.5 A	84.2	4530	E
WC-SED-15	11/21/06	0 - 0.5	Crane River - salt marsh		-		-	†		
WC-SED-16	. 11/21/06	0 - 0.5	Crane River - salt marsh							
WC-SED-17	11/22/06	0 - 0.5	Crane River - salt marsh	1200	48.9		1780	4870 E	38700	
WC-SED-18	11/21/06	0-05	Crane River - mud flats	}						E
WC-SED-19	11/22/06	0 - 0.5	Crane River - salt marsh				-			
WC-SED-20	11/21/06	0 - 0.5	Crane River - mud flats	97.7	3.76	A	151	405	3600	
nber of Samples			Crane River - solt marsh	282	9.48		1310	1490	23500	
mber of Detections				10	10	T	10	10	-	E
hmetic Mean Concentration	[2]			10	9		10	10	10	
imum Detected Concentra				448	18.4		863		10	
imum Detected Concentra	tion			2.71	0.425		3.75	1998	17337	
ation of Maximum Detecte				1200	48.9	+	2180	40.2	2040	
and of Marking Defects	ca Concentration			WC-SED-16	WC-SED-16		WC-SED-1	4880 WC-SED-1	38700	

- It bgs = feet below ground surface
- mg/kg = milligrams per,kilogram.
- pg/g = picograms per grain.
- XRF = x-ray fluorescence
- "--" = not analyzed.
- [a] = Non-detected values assumed present at one-half the quantitation limit.
- I. Data transcribed from Table 3 within the June 6, 2003 Limited Assessment report prepared by Geologic Field Services, Inc. (GFS).
- 2. Data transcribed from Table 10 within the October 3, 1996 Final Site Inspection Prioritization Report prepared by Stone & Webster Environmental Technology & Services (prepared for the United States Environmental Protection Agency - New England Office of Site Remediation and Restoration.
- 3. Data transcribed from the River Sediment Analysis summary table within the May 1984 Engineering Report for Dauversport Tunning Co. prepared by SP, Inc.
- 4. Laboratory data.
- 5. XRF data.
- 6. Estimated Maximum Possible Concentration
- 7. Maximum value among initial run and diluted analysis applied.
- A = Amount detected is less than the Lower Calibration Limit.
- U = Not detected at the presented laboratory reporting limit.
- Q = Indicates the presence of a quantitative interference.
- This situation generally results in an underestimation of the affected analytes.
- E = Amount detected is greater than the Upper Calibration Limit,

		•					3582-46-9	
S Number (if available)				1,2,3,4,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	1,2,3,4,6,7,8-HpCDD	OCDD
Sample ID	Sample Date	Sample Depth	Sample Area	(pg/s)	(pg/g)	(08/B)	(pg/g)	(pg/g)
	<u> </u>	(fl bgs)	Tit (File					
ADTE I	5/20/1996	0.5 - 1.5	Tidal Flats Tidal Flats		-			
IBTF-I	5/20/1996	0.5 - 1.5					 	
IBTF-2	5/20/1996	0.5 - 1.5	Tidal Flats					
IBTF-3	5/20/1996	0.5 - 1.5	Tidal Flats	1	-			
HBTF-4	5/20/1996	0.5 - 1.5	Tidal Flats		-			
HBTF-5	5/20/1996	0.5 - 1.5	Tidal Flats	-				
HBTF-6	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	├ ── <u>-</u>				
HBTF-7	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidel Flats					
HBTF-8	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	ļ				
HBTF-9	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	ļ <u>-</u>	-	· -		
HBTF-10	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	1		I		
HBTF-11	7/29/1996 & 7/30/1996	0.5 - 1.5	Tidal Flats	-		<u> </u>		
HBTF-12	April 2005	0 - 1.5	Salt Marsh Area A	-	-	<u> </u>		
Marsh-1	April 2005	0 - 1.5	Sait Marsh Area A					
Marsh-2	April 2005	0 - 1.5	Salt Marsh Area A	 	-			
Marsh-3	April 2005	0 - 1.5	Salt Marsh Area A	1				
Marsh-4	April 2005	0 - 1.5	Salt Marsh Area A		_			
Marsh-5	April 2005	0-15	Salt Marsh Area A	 	-	1		
Marsh-6	April 2005	0 - 1.5	Salt Marsh Area A			I -		
Marsh-11	April 2005	0 - 1.5	Sult Marsh Area A			T		
Marsh-12	April 2005	0 - 1.5	Salt Marsh Area B	 				
Marsh-7	April 2005	0 - 1.5	Salt Marsh Area B					
Marsh-8	April 2005	0-1.5	Salt Marsh Area B			T		
Marsh-9	April 2005	0 - 1.5	Salt Marsh Area B	<u></u>				
Marsh-10	April 2005	0 - 1.5	Mud Flats					
Mud Flnt-1	April 2005	0 - 1.5	Mud Flats					ļ
Mud Flat-3	April 2005	0 - 1.5	Mud Flats					
Mud Flat-4		0-1.5	Mud Flats				-	
Mud Flat-5	April 2005	0-1.5	Mud Flets					
Mud Flat-6	April 2005	0 - 1.5	Mud Flats					
Mud Flat-7	April 2005	0-1.5	Mud Flats					
Dup-1 (Mud Flat-7)	April 2005	. 0-1.5	Railroad Bridge					
RR Bridge	May-84		Steam Bridge					
1 Steam Bridge	May-84							

TABLE:5 VALUES USED FOR DAILY INTAKE CALCULATIONS

Former Creese & Cook Disposal Site 25 Clinton Avenue :Danvers, Massachusetts

cenario Timeframe: Current/Future Medium Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Reference
ncidental ingestion of and	Trespasser	Youth	Disposal	. EPC	Exposure Point Concentration	Chemical-specific	mg/kg	1
fermal contact with soil	,	(ages 6-11)	Site	IR,	Ingestion rate of soil	. 50 .	mg/đay	2.
		ļ	1	AF	Skin-soil adherence factor	0,14	mg/cm² - day	3.
			1	SA	Skin surface area	1,863	cm²	· 6.
	-	l'		EF	Exposure Frequency	91	events/year	3.
			ļ.,.	ED	Exposure Duration	1	day/event	h.
			 	EP ·	Exposure Period	5	years	7.
		1		BW	Body weight	27	kg	. *
		1	}	AT _e	Averaging Time-cancer	70	years	9.
		1	i .	AT,	Averaging Time-noncancer	5 .	years	9.
			'	RAF	Relative Absorption Factor	Chemical-specific	unitless	10
•]	ļ	CI	Units Conversion Factor	365	days/year	
		1		C2	Units Conversion Factor	1,000,000	mg/kg	i

EXPOSURE FACTORS USED IN RISK CALCULATIONS

TRESPASSER-SOIL

	dermal	ingestion
Cancer	1.70E-07	3.26E-08
NC	2.38E-06	4.56E-07

ADI mgeniem (mg/kg-d) = EPC * IR * EF * ED * EP * 1/BW * 1/AT * 1/C1 * 1/C2 *RAF.

ADI dermal (mg/kg-d) = EPC * SA * AF * EF * ED * EP * 1/BW * 1/AT * 1/C1 * 1/C2 * RAF

- 1. The exposure point concentration (EPC) is the arithmetic mean concentration of each chamical of potential concern (COPC) in surface (0-1' bgs) soil at the Site.
- 2. Only soil ingestion rate for adults (ages >6 years) is from Appendix B, Table B-3 of the Massachusetts Department of Environmental Protection (DEP), Bureau of Waste Site Cleanup and Office of Research and Standards, Ovidence for Disposal Site Risk Characterization - In Support of the Massachusetts Contingency Plan, Interim Final Policy, WSC/ORS-95-141, July 1995.
- 3. The Weighted Adherence Factor for the trespasser was calculated using the Youth Soccer Players #1 exposure scenario, from DEP's "Technical Update; Weighted Skin-Soil Adherence Factors", April 2002. Skin surface area values were used for children aged 6 <11 years. Parts of the body assumed to be exposed to soil include hands, forcarms and feet.
- 4. Skin surface area is based on the 50th percentile skin surface area for moles and females 6-11 years of age, from Appendix B, Table B-2 of the Massachusetts Department of Environmental Protection (DEP), Bureau of Waste Site Cleamin and Office of Research and Standards, Guidance for Disposal Site Risk Characterization - In Support of the Massachusetts Contingency Plan, Interim Final Policy, WSC/ORS-93-141, July 1993, Parts of the body assumed to be exposed include forearms (640 cm²), feet (724 cm²) and hands (499 cm²).
- 5. Frequency of exposure describes how often the exposure event occurs over a given period of time. It was assumed that trespassers would be exposed to contaminants in soil for 3 days per week during the seven non-winter months (April-October).
- 6. The exposure duration describes how long each individual exposure event might last. For dermal contact with and incidental ingestion of soil, exposure duration is by definition I day/event. During this event, the receptor is assumed to receive the daily intake of contaminants.
- 7. The exposure period describes the length of time over which the receptor comes into contact with contaminants. We have assumed that exposure occurs over the course of 5 years, in accordance with the Massachusetts Contingency Plan (MCP). (310 CMR 40.0953)
- 8. Body weight is based on the average of the 50th percentile body weight for males and females 6-11 years. From Appendix B, Table B-1 of the Massachusetts Department of Environmental Protection (DEP), Bureau of Waste Site Cleanup and Office of Research and Standards, Guidance for Disposal Site Risk Characterization - In Support of the Massachusetts Contingency Plan, Interim Final Policy, WSC/ORS-95-141, July 1995.
- 9. For noncancer risks, the averaging period is set equal to the duration of the exposure period. The averaging period is equal to a lifetime (i.e., 70 years) when estimating cancer risks.
- 10. Relative absorption factors were generally obtained from MADEP, Bureau of Waste Site Clearup and Office of Research and Standards (ORS), Workbook: MCP Toxicity.xls, Sheet Toxicity, January 2006.

TABLE 6 VALUES USED FOR DAILY INTAKE CALCULATIONS

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

Current/Future Scenario Timeframe: Fugitive Dust Exposure Medium:

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Reference
Initalation of fugitive dust	Tiespasser	Youth (6-11 years)	Disposal Site	RPair EF ED EP	Exposure Point Concentration Respirable Particulates in Air Exposure Frequency Exposure Doration Exposure Period Averaging Time-cancer Averaging Time-toncancer Units Conversion Factor Units Conversion Factor	Chemical-specific 32 91 1 5 70 5 365	ug/m² event/year hours/event years years days/year hours/day	2. 3. 4. 5. 6.

TRESPASSER-FUGITIVE DUST inhalation 7.42E-04 Cancer 1.04E-02 NC

Average Daily Exposure (ADE) Equations (Tresposser):

 $ADI_{inholation}$ (mg/m³) = EPC * EF * EP * ED * 1/AT * 1/C1 * 1/C2

Where:

EPC = Soil EPC (mg/kg) * [RPair (ug/m³) * [OHM]soil (mg/kg) * 0.000000001 (kg/ug)]

- 1. EPCs for outdoor particulates were estimated from soil EPCs using the emission equations provided above.
- 2. The airborne particulate concentration with particle aerodynamic diameter of less than 10 micrometers (PM10) was obtained from the Massachusetts Department of Environmental Protection (DEP), Bureau of Waste Site Cleanup and Office of Research and Standards, Guidance for Disposal Site Risk Characterization - In Support of the Massachusetts Contingency Plan, Interim Final Policy, WSC/ORS-95-141, July 1995.

The PM10 value for the open field scenario was used to evaluate potential exposure by tresspassers.

- 3. Prequency of exposure describes how often the exposure event occurs over a given period of time. It was assumed that, during the 7 non-winter months, trespassers are exposed to soil 3 days
- 4. The exposure duration describes how long each individual exposure event might last. Trespassers of the Site were assumed to be exposed for only one hour per event.
- 5. The exposure period describes the length of time over which the receptor comes into contact with contaminants. We have assumed that exposure occurs over the course of 5 years, in accordance with the Massachusetts Contingency Plan (MCP) (310 CMR 40.0953)
- 6. For noncancer risks, the averaging period is set equal to the duration of the exposure period. The averaging period is equal to a lifetime (i.e., 70 years) when estimating cancer risks.

TABLE 7 VALUES USED FOR DAILY INTAKE CALCULATIONS

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

Scenario Timeframe:	Current/Future
Medium:	Sediment
Exposure Medium:	Sediment

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Unlts	Reference
Incidental ingestion of and	Trespasser	Youth	Disposal	EPC	Exposure Point Concentration	Chemical-specific	mg/kg	1.
dermal contact with sediment		(ages 6-11)	Site	IR,	Ingestion rate of sediment	50	. mg/day	2.
•	1			AF	Skin-sediment adherence factor	1	mg/cm² - day	J.
			'	SA	Skin surface area	2,980	cm²	•
				EF	Exposure Frequency	61 .	events/year	3.
•	į.			ED	Exposure Duration	1	day/event	•.
	own more	1.0		EP.	Exposure Period	-5	years	7.
				BW .	Body weight	27	kg	z.,
				AT.	Averaging Time-cancer	. 70	years	9.
			_ , , , , , , , , , , , , , , , , , , ,	AT,	Averaging Time-noncancer		- Aeste	9.
)		i ' '	RAF	Relative Absorption Factor	Chemical-specific	unitless	10
	•	,		C1 '	Units Conversion Factor	365	days/year	
				C2	Units Conversion Factor	1,000,000	mg/kg	

EXPOSURE FACTORS
USED IN RISK
CALCULATIONS

TRESPASSER-SEDIMENT

	Γ			dermal	ingestion
	Cancer		٠.	1.30E-06	2.18E-0
i	NC			1.82E-05	3.06E-0

Average Daily Intake (ADI) Equations:

ADI ingention (mg/kg-d) = EPC * IR * EF * ED * EP * 1/BW * 1/AT * 1/C1 * 1/C2 *RAF;

ADI amd (mg/kg-d) = EPC * SA * AF * EF * ED * EP * 1/BW * 1/AT * 1/C1 * 1/C2 * RAF . .

Notes:

- 1. The exposure point concentration (EPC) is the arithmetic mean concentration of each chemical of potential concern (COPC) in sediment at the Site.
- 2. Daily soil ingestion rate for adults (eges >6 years) is from Appendix B, Table B-3 of the Massachusetts Department of Environmental Protection (DEP), Bureau of Waste Site Cleanup and Office of Research and Standards, Guidance for Disposal Site Risk Characterization In Support of the Massachusetts Contingency Plan, Interim Final Policy, WSC/ORS-95-141, July 1995.
- 3. The Adherence Factor for sediment was obtained from MADEP's "Technical Update: Weighted Skin-Soil Adherence Factors", April 2002. This AF is not skin surface area-weighted.
- Skin surface area is based on the average of the 50th percentile skin surface area for makes and females 6-11 years of age, from Appendix B, Table B-2 of MADEP 1995.
 Parts of the body assumed to be exposed include forcerns (640 cm²), feet (724 cm²), lower logs (1,171 cm²) and hands (499 cm²).
- 5. Frequency of exposure describes how often the exposure event occurs over a given period of time. We assumed that trespassers would be exposed to contaminants in sediment for 2 days per week during the seven non-winter months (April-October).
- 6. The exposure duration describes how long each individual exposure event might last. For dermal contact with and incidental ingestion of sediment, exposure duration is by definition 1 day/event. During this event, the receptor is assumed to receive the daily intake of contaminants.
- 7. The exposure period describes the length of time over which the receptor comes into contact with contaminants. We have assumed that exposure occurs over the course of 5 years, in accordance with the Massachusetts Contingency Plan (MCP).
- 8. Body weight is based on the 50th percentile body weight for males and females aged 6-11 years. From Appendix B, Table B-1 of the Massachusetts Department of Environmental Protection (DEP), Bureau of Waste Site Cleanup and Office of Research and Standards, Quidance for Disposal Site Risk Characterization In Support of the Massachusetts Contingency Plan, Interim Final Policy, WSC/ORS-95-141, July 1995, ago-weighted for specific age groups.
- 9. For noncancer risks, the averaging period is set equal to the duration of the exposure period. The averaging period is equal to a lifetime (i.e., 70 years) when estimating cancer risks.
- 10. Relative absorption factors were generally obtained from MADEP, Bureau of Waste Site Cleanup and Office of Research and Standards (ORS), Workbook: MCP Toxicity.xls, Sheet Toxicity, January 2006.

TABLE 8
RELATIVE ABSORPTION FACTORS FOR SOIL

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

			il (1)	
Chemical	CAS	Oral Absorption	Dermal Absorption	Source (2)
of Potential	Number	Fraction from Soil	Fraction from Soil	Source (2)
Concern				
Dioxins				MADEP, 2006
2,3,7,8-TCDD	1746-01-6.	1.00E+00	2.00E-01	
1,2,3,7,8-PeCDD	40321-76-4	1.00E+00	2.00E-01	(3)
1,2,3,4,7,8-HxCDD	39227-28-6	1.00E+00	2.00E-01	(3)
1,2,3,6,7,8-HxCDD	57653-85-7	1.00E+00	2.00E-01	(3)
1,2,3,7,8,9-HxCDD	19408-74-3	1.00E+00	2.00E-01	(3)
2,3,7,8-TCDF	51207-31-9	1.00E+00	2.00E-01	(3)
1,2,3,7,8-PeCDF	57117-41-6	1.00E+00	2.00E-01	(3)
1,2,3,7,6-FECDF	57117-31-4	1.00E+00	2.00E-01	(3)
2,3,4,7,8-PeCDF	3711131	1.00E+00	2.00E-01	(3)
1,2,3,4,7,8-HxCDF		1.00E+00	2.00E-01	(3)
1,2,3,6,7,8-HxCDF		1.00E+00	2.00E-01	. (3)
2,3,4,6,7,8-HxCDF		1.00E+00	2.00E-01	(3)
1,2,3,7,8,9-HxCDF		1.00E+00	2.00E-01	(3)
1,2,3,4,7,8-HpCDF		1.00E+00	2.00E-01	(3)
1,2,3,4,7,8,9-HpCDF		1.00E+00	2.00E-01	(3)
OCDF	2 7 7 7 7 7 7 7	1.00E+00	2.00E-01	(3)
1,2,3,4,6,7,8-HpCDD	35822-46-9		2.00E-01	(3)
OCDD		1.00E+00	Z.00L-01	
Inorganics		1 007100	3.00E-02	MADEP, 2006
Arsenic	7440-38-2	1.00E+00		MADEP, 2006
Chromium VI	18540-29-9	1.00E+00	9.00E-02	MADEP, 2006
Lead	7439-92-1	5.00E-01	6.00E-03	I WINDER, 2000

Footnotes:

- 1. Assumed 100% for compounds without MADEP oral RAF values.
- MADEP, Burcau of Waste Site Cleanup and Office of Research and Standards (ORS), Workbook: MCP Toxicity.xls, Sheet Toxicity, January 9, 2006
- 3. Assumed oral and dermal absorption fraction for 2,3,7,8-TCDD.

TABLE 9 SUMMARY OF EXPOSURE POINT CONCENTRATIONS

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

		Trespasser/Recreational Receptor					
Chemical of Potential	CAS Number						
Concern		Soil	Fugitive Dust	Sediment			
Dioxins	· ·						
2,3,7,8-TCDD	1746-01-6	6.14E-06	1.96E-13	3.28E-06			
1,2,3,7,8-PeCDD	40321-76-4	1.17E-05	3.73E-13	8.87E-06			
1,2,3,4,7,8-HxCDD	39227-28-6	3.03E-05	9.71E-13	1.60E-05			
1,2,3,6,7,8-HxCDD	57653-85-7	4.41E-04	1.41E-11	9.24E-05			
1,2,3,7,8,9-HxCDD	19408-74-3	9.79E-05	3.13E-12	3.77E-05			
2,3,7,8-TCDF	51207-31-9	1.50E-06	4.80E-14	9.12E-06			
1,2,3,7,8-PeCDF	57117-41-6	1.60E-06	5.12E-14	3.77E-06			
2,3,4,7,8-PeCDF	57117-31-4	5.06E-06	1.62E-13	1.48E-05			
1,2,3,4,7,8-HxCDF		3.00E-05	9.59E-13	2.15E-05			
1,2,3,6,7,8-HxCDF		1.46E-05	4.68E-13	1.46E-05			
2,3,4,6,7,8-HxCDF		8.48E-05	2.71E-12	2.52E-05			
1,2,3,7,8,9-HxCDF		4.22E-06	1.35E-13	3.22E-06			
1,2,3,4,7,8-HpCDF		1.69E-03	5.42E-11	4.48E-04			
1,2,3,4,7,8,9-HpCDF		4.51E-05	1.44E-12	1.84E-05			
OCDF		5.65E-03	1.81E-10	8.63E-04			
1,2,3,4,6,7,8-HpCDD	• 35822-46-9	1.82E-02	5.82E-10	2.00E-03			
OCDD		2.04E-01	6.52E-09	1.73E-02			
Inorganics							
Arsenic	7440-38-2	4.60E+01	1.47E-06	6.19E+01			
Lead	7439-92-1	6.13E+01	1.96E-06	6.45E+01			
Chromium VI	18540-29-9	2.29E+01	7.32E-07	9.66E+00			

All concentrations are presented in parts per million (ppm) / milligrams per kilogram (mg/kg).

TABLE 10 NON-CANCER TOXICITY DATA - ORAL/DERMAL

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

Chemical of Potential	CAS Number	Oral RfD		Primary Target	Combined Uncertainty/Modifying	RfD: Target Organ(s) Source Date	
Concern		Chronic	Units	Organ(s)	Factors	Source	
			<u></u>				
Dioxins	1746-01-6		mg/kg/day				
2,3,7,8-TCDD	40321-76-4		mg/kg/day			<u> </u>	
1,2,3,7,8-PeCDD	39227-28-6		mg/kg/day				
1,2,3,4,7,8-HxCDD	57653-85-7		mg/kg/day				
1,2,3,6,7,8-HxCDD	19408-74-3	· :-	mg/kg/day				
1,2,3,7,8,9-HxCDD	51207-31-9		mg/kg/day				
2,3,7,8-TCDF	57117-41-6		mg/kg/day				
1,2,3,7,8-PeCDF	57117-31-4		mg/kg/day				
2,3,4,7,8-PeCDF	3/11/-31-4		mg/kg/day			<u> </u>	
1,2,3,4,7,8-HxCDF			mg/kg/day				
1,2,3,6,7,8-HxCDF	·		mg/kg/day			. ••	
2,3,4,6,7,8-HxCDF			mg/kg/day	:	,		, -5.
1,2,3,7,8,9-HxCDF			mg/kg/day				
1,2,3,4,7,8-HpCDF			mg/kg/day	<u></u> .			
1,2,3,4,7,8,9-HpCDF			mg/kg/day				
OCDF	25022.46.0	<u> </u>	mg/kg/day			••	<u> </u>
1,2,3,4,6,7,8-HpCDD	35822-46-9	<u> </u>	mg/kg/day				
OCDD			Ing/kg/day	<u> </u>			7
Inorganics	7440 20 2	3.00E-04	mg/kg/day	Skin; vascular system	3 x 1	IRIS	12/22/2006
Arsenic	7440-38-2	3.00E-04 3.00E-03	mg/kg/day	Skin; vascular system	3 x 1	IRIS	12/22/2006
, Chromium VI	18540-29-9		mg/kg/day	CNS		MADEP	1992
Lead	7439-92-1	7.50E-04	I may kangar	<u> </u>			

Footnotes:

IRIS = USEPA's Integrated Risk Information System (www.epa.gov/iris). Searched-December 2006.

MADEP, 1992 = Residential Shortform.doc

-- = No information available.

CNS = Central Nervous System

TABLE 11 NON-CANCER TOXICITY DATA - INHALATION

Former Creese & Cook Disposal Site. 25 Clinton Avenue Danvers, Massachusetts

Chemical of Potential	↑ ·		ation RfC Primary Target		Combined Uncertainty/ Modifying	RfC:Source	
Сопсет		Chronic	Units	Organ(s)	Factors	Source	Date
Dioxins							
2,3,7,8-TCDD	1746-01-6		mg/m³			<u>.</u> ·	
1,2,3,7,8-PeCDD	40321-76-4		mg/m³				
1,2,3,4,7,8-HxCDD	39227-28-6		mg/m³			••	
1,2,3,6,7,8-HxCDD	57653-85-7		mg/m³				
1,2,3,7,8,9-HxCDD	19408-74-3		mg/m³				
2,3,7,8-TCDF	51207-31-9		mg/m³			 .	
1,2,3,7,8-PeCDF	57117-41-6		mg/m³			· · ·	
2,3,4,7,8-PeCDF	57117-31-4		mg/m³				
1,2,3,4,7,8-HxCDF			mg/m³		,		-
1,2,3,6,7,8-HxCDF			mg/m³	· 	-		
			mg/m³				
1,2,3,7,8,9-HxCDF			mg/m³-				
1,2,3,4,7,8-HpCDF			mg/m³				
1,2,3,4,7,8,9-HpCDF			mg/m³				
OCDF			mg/m³			· · · · · · · · · · · · · · · · · ·	
1,2,3,4,6,7,8-HpCDD	35822-46-9		mg/m³	 `			
OCDD			mg/m³				<u> </u>
Inorganics				·	1	AADED CHEMAAA	T
Arsenic	7440-38-2	2.50E-06	mg/m³			MADEP CHEM/AAL	12/22/2006
Chromium VI	18540-29-9	1.00E-04	mg/m³	Lungs	300 x 1	IRIS MADEP CHEM/AAL	12/22/2000
Lead	7439-92-1	1.00E-03	mg/m³	CNS		MADEL CUEMNAAT	l

Footnotes:

IRIS = USEPA's Integrated Risk Information System (www.epa.gov/iris). Searched December 2006.

MADEP, CHEM/AAL = Massachusetts Department of Environmental Protection. The Chemical Health Effects Assessment Methodology and the Method to Derive Allowable Ambient CNS = Central Nervous System

-- = No information available.

TABLE 12 CANCER TOXICITY DATA - ORAL/DERMAL

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

Chemical	CAS	Oral Canc	er Slope Factor	USEPA 1986 Weight of Evidence/ Cancer Guideline	Oral CSF	
of Potential Concern	of Potential Number Concern		Units	Description	Source	Date
Dioxins		····				
2,3,7,8-TCDD	1746-01-6	1.50E+05	(mg/kg-day) '	B2	HEAST	1997
1,3,7,8-1CDD	40321-76-4	7.50E+04	(mg/kg-day)	B2	Calculated (1)	
1,2,3,7,8-PeCDD	39227-28-6	1.50E+04	(mg/kg-day)	B2	Calculated (1)	
1,2,3,4,7,8-HxCDD	57653-85-7	1.50E+04	(mg/kg-day)	B2	Calculated (1)	5 C - 1 T - 1 T - 1
1,2,3,6,7,8-HxCDD	19408-74-3	1.50E+04	(mg/kg-day)	B2	- Carculated (1)	
1,2,3,7,8,9-HxCDD	51207-31-9	1.50E+04	(mg/kg-day)	B2	Calculated (1)	
2,3,7,8-TCDF	57117-41-6	7.50E+04	(mg/kg-day)	B2	Calculated (1) -	
1,2,3,7,8-PeCDF	57117-31-4	7.50E+04	(mg/kg-day)	B2	Calculated (1)	
2,3,4,7,8-PeCDF	3/11/-31-4	1.50E+04	(mg/kg-day)	B2	Calculated (1)	
1,2,3,4,7,8-HxCDF		1.50E+04	(mg/kg-day)	B2	Calculated (1)	
1,2,3,6,7,8-HxCDF		1.50E+04	(mg/kg-day)	B2	Calculated (1)	
2,3,4,6,7,8-HxCDF		1.50E+04	(mg/kg-day)	B2	Casculated (1)	
1,2,3,7,8,9-HxCDF		1.50E+04	(mg/kg-day)"	B2	Calculated (1)	
1,2,3,4,7,8-HpCDF		1.50E+04	(mg/kg-day)	B2	Calculated (1)	·
1,2,3,4,7,8,9-HpCDF			(mg/kg-day)	B2	Calculated (1)	
OCDF		1.50E+02 1.50E+04	(mg/kg-day)	B2	Calculated (1)	
1,2,3,4,6,7,8-HpCDD	35822-46-9		(mg/kg-day)	B2	Calculated (1)	
OCDD		1.50E+02	(mg/kg-day)			
Inorganics		1	(mg/kg-day)	1 A	IRIS	12/22/2006
Arsenic	7440-38-2	1.50E+00	(mg/kg-day)	A (via inhalation)	RIS	12/22/2006
Chromium VI	18540-29-9		(mg/kg-day)	B2	1	
Lead	7439-92-1		(Ing Ag day)	J	<u> </u>	

Footnotes:

US EPA Weight-of-Evidence Classification of Carcinogenicity:

A: Human carcinogen

B: Probable human carcinogen

B1: Limited evidence of carcinogenicity in humans from epidemiological studies

par sufficient evidence of carcinogenicity in animals, inadequate evidence in humans

C: Possible human carcinogen

D: Not classified

E: No evidence of carcinogenicity

B2: Sufficient evidence of carcinogenicity in animals, madequate evidence in			
B2: Sufficient evidence in automogenius		- 4-window could be for the remaining	e dioxins:
B2: Sufficient evidence of carcinogenicity in animals, inducedure evidence tracking value for 2, 3, 7,8-TCDD 3. The following toxicity equivalency factors (TEFs) were applied to the toxicity value for 2, 3, 7,8-TCDD	to derive	a toxicity visite for the formation	6
and the seminater equipment factors (1 PFs) were applied to the toxical factor of the			

aty equivalency research		1,2,3,6,7,8-HxI	0.1
2,3,7,8-TCDD	0.5	2,3,4,6,7,8-Hx	0,1
1,2,3,7,8-PeCDD		1,2,3,7,8,9-Hx	0.1
1,2,3,4,7,8-HxCDD	0.1	1,2,3,4,7,8-Hp	0,1
1,2,3,6,7,8-HxCDD	0.1	1,2,3,4,7,8,9-H	O, I
1,2,3,7,8,9-HxCDD	0.1		0.001
2,3,7,8-TCDF	0.1	OCDF	0.1
1,2,3,7,8-PeCDF	0.5	1,2,3,4,6,7,8-H	0.001
2,3,4,7,8-PeCDF	0.5	OCDD	0.001
1 2 3 4 7 8-HxCDF	0.1		

IRIS - USEPA's Integrated Risk Information System (www.epa.gov/iris). Searched December, 2006.

HEAST - National Center for Exposure Assessment, Health Effects Assessment Summary Tables, 1997.

MADEP 2006: 'Toxicity.x's' spreadsheet, Office of Research & Standards. January 9, 2006.

-- = Constituent not characterized as carcinogenic or no information available.

QA: LM Date: 12/22/06

TABLE 13 CANCER TOXICITY DATA - INHALATION

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

Chemical of Potential	otential Number Cancer Guideline			Unit Risk or Inhalation CSF: Source		
Concern			Source	Date		
Dioxins						
2,3,7,8-TCDD	1746-01-6	3.30E+05	(mg/m³)-1	B2	HEAST	1997
1,2,3,7,8-PeCDD	40321-76-4	1.65E+05	(mg/m³)-1	B2	Calculated (1)	1
1,2,3,4,7,8-HxCDD	39227-28-6	3.30E+04	(mg/m³)- ¹	B2	Calculated (1)	
1,2,3,6,7,8-HxCDD	57653-85-7	1.65E+04	(mg/m³)-1	B2	Calculated (1)	
1,2,3,7,8,9-HxCDD	19408-74-3	3.30E+03	(mg/m³)-1	B2	Calculated (1)	
2,3,7,8-TCDF	51207-31-9	1.65E+03	(mg/m³)-1	B2	Calculated (1)	
1,2,3,7,8-PeCDF	57117-41-6	1.65E+03	(mg/m ³)- ³	B2	Calculated (1)	<u>.</u>
2,3,4,7,8-PeCDF	57117-31-4	8.25E+02	(mg/m³)-1	B2	Calculated (1)	
1,2,3,4,7,8-HxCDF		1.65E+02	(mg/m³)-1	B2	Calculated (1)	
1,2,3,6,7,8-HxCDF		8.25E+01	(mg/m³)-1	B2	Calculated (1)	
2,3,4,6,7,8-HxCDF		1.65E+01	(mg/m³)-1	B2 .	Calculated (1)	1
1,2,3,7,8,9-HxCDF	•	8.25E+00	(mg/m³)-1	В2	Calculated (1)	1
1,2,3,4,7,8-HpCDF		1.65E+00	(mg/m³)-1	B2	Calculated (1)	<u> </u>
1,2,3,4,7,8,9-HpCDF		8.25E-01	(mg/m³)-1	B2 .	Calculated (1)]
OCDF		1.65E±03	(mg/m³)-1	B2	Calculated (1)	
1,2,3,4,6,7,8-HpCDD	35822-46-9	8.25E-02	(mg/m³)-1	. B2	Calculated (1)	
OCDD		1.65E-06	(mg/m³)-1	B2 .	Calculated (1)	
Inorganics		1				
Arsenic	7440-38-2	4.30E+00	(mg/m³)-1	A	IRIS	6/13/2006
Chromium VI	18540-29-9	1.20E+01	(mg/m³)-1	A (via inhalation)	IRIS	6/13/2006
Lead	7439-92-1		1.0	B2		<u> </u>

Footnotes:

IRIS = USEPA's Integrated Risk Information System (www.epa.gov/iris). Searched December 2006...

HEAST = National Center for Exposure Assessment, Health Effects Assessment Summary Tables, 1997.

A blank space indicates that no toxicity information is available.

I. The following toxicity equivalency factors (TEFs) were applied to the toxicity value for 2,3,7,8-TCDD to derive a toxicity value for the remaining dioxins:

2,3,7,8-TCDD	1	1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8-PeCDD	0.5	2,3,4,6,7,8-HxCDF	0,1
1,2,3,4,7,8-HxCL	0.1	1,2,3,7,8,9-HxCDF	0.1
1,2,3,6,7,8-HxCI	0.1	1,2,3,4,7,8-HpCDF	0.1
1,2,3,7,8,9-HxCI	0.1	1,2,3,4,7,8,9-HpCDF	0.1
2,3,7,8-TCDF	0.1	OCDF	0.001
1,2,3,7,8-PeCDF	0.5	1,2,3,4,6,7,8-HpCDD	0.1
2,3,4,7,8-PeCDF	0.5	OCDD	0.001
1,2,3,4,7,8-HxCL	0.1		

TABLE 14 SUMMARY OF RISK ESTIMATES

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

Receptor	Exposure Point	Exposure Medium	Exposure Pathway	Hazard Index	Excess Lifetime Cancer Risk
Trespasser	Site	Soil Fugitive Dust	Dermal Contact Incidental Ingestion Inhalation Dermal Contact Incidental Ingestion	0.01 0.09 0.01 0.1 0.08	1.E-05 1.E-05 1.E-08 2.E-05 3.E-06
CUMULATIVE RISI	K RISK LIMIT	S FOR IMMINENT	HAZARDS:	10	4.E-05 1.E-05

TABLE 15 CALCULATION OF HAZARD INDICES AND RISK ESTIMATES

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

RECEPTOR: Trespesser/Recreational Receptor
EXPOSURE POINT: Site
EXPOSURE PATHWAY: Dermal Contact with Soil

	T	Noncance	Pileets	7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chemical of Potential Concern	CAS No.	Exposure Point Concentration (EPC)	Noncancer Exposure Factor (EF)	Dermal Relative Absorption Factor (RAF)	Average Daily Dose (ADD)	Chronic Dermal Reference Dose (RfD)	Hazard Quotient (HQ
		rng/kg		unitless	mg/kg-day	mg/kg-day	·
Dioxins							
2,3,7,8-TCDD	1746-01-6	6.14E-06	2.38E-06	2.00E-01	2.92E-12	-	: NC
1,2,3,7,8-PeCDD	40321-76-4	1.17E-05	2.38E-06	2.00E-01	5.54E-12	-	NC
1,2,3,4,7,8-HxCDD	39227-28-6	3.03E-05	2.38E-06	2.00E-01	1.44E-11	1 -	NC
1,2,3,6,7,8-HxCDD	57653-85-7	4.41E-04	2.385-06	2.00E-01	2.10E-10	(-	NC
1,2,3,7,8,9-HxCDD	19408-74-3	9.79E-05	2.38E-06	2.00E-01	4.66E-11		NC
2,3,7,8-TCDF	51207-31-9	1.50E-06	2.38E-06	2.00E-01	7.13E-13	\ 	, NC
1,2,3,7,8-PeCDF	57117-41-6	1.60E-06	2.38E-06	2.00E-01	7.60E-13	; /	, NC
2,3,4,7,8-PeCDF	57117-31-4	5.06E-06	2.38E-06	2.00E-01	2.41E-12		NC
1,2,3,4,7,8-HxCDF		3,00E-05	2.38E-06	2.00E-01	1.43E-11	· ·~	· NC
1,2,3,6,7,8-HxCDF		1.46E-05	2.38E-06	2.00B-01	6.96E-12		NC
2,3,4,6,7,8-HxCDF		8.48E-05	2.38E-06	2,00E-01	4.03E-11	·	NC
1,2,3,7,8,9-HxCDF	,	4.22E-06	2.38E-06	2,00E-01	2.01E-12		NC
1,2,3,4,7,8-HpCDF		1.69E-03	2,38E-06	2.00E-01	8.05E-10	_	NC
1,2,3,4,7,8,9-HpCDF		4.51E-05	2,38E-06	2.00E-01	2.14E-11	·-	NC
OCDF		5.65E-03	2.38E-06	2.00E-01	2.69E-09		, NC
1,2,3,4,6,7,8-HpCDD	35822-46-9	1.82E-02	2.38E-06	2.00E-01	8.65E-09		NC
OCDD		2,04E-01	2,38E-06	2.00E-01	9.69E-08		, NC
vorganics							
Arsenic	7440-38-2	4,60E+01	2,38E-06	3.00E-02	3.28E-06	3.00E-04	1.09E-02
Lead	7439-92-1	6.13E+01	2.38E-06	6.00E-03	8.74E-07	7.50B-04	1.17E-03
Chromium VI	18540-29-9	2,29E+01	2.38E-06	9.00E-02	4.90E-06	3.00E-03	1.63E-03

Average Daily Dose (ADD) = EPC * EF * RAF Hazard Quotient (HQ $_{cost}$) = ADD / RID Cumulative Hazard Index (HI) = Σ HQ $_{cost}$

		Cancer	Effects				
Chemical of Potential Concern	CAS No.	Exposure Point Concentration (EPC)	Cancer Exposure Factor (EF)	Dermal Relative Absorption Factor (RAF)	Lifetime Average Daily Dose (LADD) mg/kg-day	Dermal Cancer Slope Factor (CSF)	Excess Lifetime Cancer Risk (ELCR)
Diorins		-1		-	inging out	(HES KG-GEV)	
2,3,7,8-TCDD 1,2,3,7,8-PcCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	1746-01-6 40321-76-4 39227-28-6 57653-85-7 19408-74-3	6.14E-06 1.17B-05 3.03E-05 4.41E-04 9.79E-05	1.70E-07 1.70E-07 1.70E-07 1.70E-07	2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01	2.09E-13 3.96H-13 1.03E-12 1.50E-11 3.33E-12	1.50E+05 7.50E+04 1.50E+04 1.50E+04 1.50E+04	3.13E-08 2.97E-08 1.55E-08 2.25E-07 4.99E-08
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	51207-31-9 57117-41-6 57117-31-4	1.50E-06 1.60E-06	1.70E-07 1.70E-07 1.70E-07	2.00E-01 2.00E-01 2.00E-01	5.09E-14 5.43E-14 1.72E-13	1.50E+04 7.50E+04 7.50E+04	7.64E-10 4.07E-09
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF		3.00E-05 1.46E-05 8.48E-05	1.70E-07 1.70E-07 1.70E-07	2.00E-01 2.00E-01 2.00E-01	1.02E-12 4.97E-13 2.88E-12	1.50E+04 1.50E+04 1.50E+04	1,53E-08 7,45E-09 4,32E-08
1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		4,22E-06 1,69E-03 4,51E-05	1.70E-07 1.70E-07 1.70E-07	2.00E-01 2.00E-01 2.00E-01	1.43E-13 5.75E-11 1.53E-12	1.50E+04 1.50E+04 1.50B+04	2.15E-09 8.63E-07 2.30E-08
OCDF 1,2,3,4,6,7,8-HpCDD OCDD	35822-46-9	5.65E-03 1.82E-02 2.04E-01	1.70E-07 1.70E-07 1.70E-07	2.00E-01 2.00E-01 2.00E-01	1.93E-12 1.92E-10 6.18E-10 6.92E-09	1,50E+02 1,50E+04 1,50E+02	2.88E-08 9.27E-06 1.04E-06
Inorganics	<u> </u>	2.45-01	1.702-07	2.00E-01	0,7215-09	1.306404	1.042-00
Arsenic Lead Chromium VI	7440-38-2 7439-92-1 18540-29-9	4.60E+01 6.13E+01 2.29E+01	1.70E-07 1.70E-07 1.70E-07	3.00E-02 6.00E-03 9.00E-02	2.34E-07 6.24E-08 3.50E-07	1.50E+00	3.52E-07 NC ! NC
CUMULATIVE ELCR							1.20E-05

Lifetime Average Daily Dose (LADD) = EPC * EF * RAF Excess Lifetime Cancer Risk (ELCR_{rese}) = LADD * CSF Cumulative ELCR = EELCR_{rese}

TABLE 16 CALCULATION OF HAZARD INDICES AND RISK ESTIMATES

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

RECEPTOR: EXPOSURE POINT: EXPOSURE PATHWAY:

		Noncancer	Effects				
hemical of Potential Concern	CAS No.	Exposure Point Concentration (EPC)	Noncancer Exposure Factor (EF)	Oral Relative Absorption Factor (RAF)	Average Daily Dose (ADD)	Chronic Oral Reference Dose (RfD)	Hazard Quorient (HQ)
,		mg/kg		unitless	mg/кg-day .	miz/kir-day	
						, <u>.</u>	NC
Dioxins	1746-01-6	6.14E-06	4,56E-07	1.00E+00	2.80E-12		NC
2,3,7,8-TCDD	40321-76-4	1.17E-05	4.56E-07	1.00E+00	5.31E-12		
1,2,3,7,8-PeCDD	39227-28-6	3.03E-05	14.56E-07	1.00E+00	1.38E-11		NC .
1,2,3,4.7,8-HxCDD	57653-85-7	4.41B-04	C 4:56E-07	1.00E+00	2.01E-10		NC
1,2,3,6,7,8-HxCDD	19408-74-3	9.79E-05	4.56E-07	1.00E+00	4.46E-11		NC
1,2,3,7,8,9-H×CDD	51207-31-9	1.50E-06	4.56E-07	1.00E+00	6.84E-13		NC
2,3,7,8-TCDP	57117-41-6	1,60E-06	4.56E-07	1,00E+00	7.29E-13	<u> </u>	NC
1,2,3,7,8-PeCDF		5.06B-06	14.56E-07	1.00E+00 .	2.31E-12		NC
2,3,4,7,8-PeCDF	57117-31-4	3.00E-05	4.56E-07	1.00E+00	1.37E-11	-	NC .
1,2,3,4,7,8-HxCDF	<u> </u>	1.46E-05	4.56E-07	1.00E+00	6.67E-12	<u> </u>	NC
1,2,3,6,7,8-HxCDF		8.48E-05	14.56E-07	1.00E+00	3.87E-11		NC
2,3,4,6,7,8-HxCDF		4.22E-06	4.56E-07	1.00E+00	1.92E-12	T	NC .
1,2,3,7,8,9-HxCDF		1,69E-03	4.56E-07	1.00E+00	7,72E-10		NC
1,2,3,4,7,8-HpCDF		4.51E-05	4.56E-07	1 DOE+00	2.06E-11		NC
1,2,3,4,7,8,9-HpCDF		5.65E-03	4.56E-07	1.00E+00	2,58E-09		NC NC
OCDP		1.82E-02	4.56E-07	1.00E+00	8.29E-09		NC NC
1,2,3,4,6;7,8-HpCDD	35822-46-9	2,04E-01	4.56E-07	1.00E+00	9,29E-08		NC NC
OCDD		2,04E-01	74.3015-07	1. 1101111			
Inorganics		1 (0510)	4.56E-07	1.00E+00	2.10E-05	3.00E-04	. 6.99B-02
Arsenic	7440-38-2	4.60E+01	4.56E-07	5.00E-01	1.40E-05	7.50E-04	1.86E-02
Lead	7439-92-1	6.13E+01	4.56E-07	1.00E+00	1.04E-05	3,00E-03	3.48E-03
, Chromium VI	18540-29-9	2.29E+01	. 14.JOE-07	1.302.100			9,20E-02

Average Daily Dose (ADD) = $\dot{E}PC = \dot{E}P^A RAF$ Hazzard Quotient ($\dot{H}Q_{circ}$) = ADD / RfD Cumulative Hazzard Index (HI) = $\Sigma \dot{H}Q_{cost}$

		Cancer E	Trects .		,		
hemical of Potential Concern	CAS No.	Exposure Point Concentration (EPC)	Cancer Exposure Factor (EF)	Oral Relative Absorption Factor (RAP)	Lifetime Average Daily Dose (LADD)	Oral Cancer Slope Factor (CSF)	Excess Lifetin Cancer Risk (ELCR)
•	. ,	mg/kg			mg/kg-day	(mg/kg-day) 1	<u>. </u>
ioxins				1 005100	2.00E-13	1.50E+05	3.00E-08
2,3,7.8-TCDD	1746-01-6	6.14E-06	3.26E-08	1.00E+00	3.79E-13	7.50E+04	2.85E-08
1,2,3,7,8-PeCDD	40321-76-4	1.17E-05	3.26E-08	1,00E+00	9.88E-13	1.50E+04	1.48E-08
1,2,3,4,7,8-HxCDD	39227-28-6	3.03E-05	3.26E-08	1.00E+00	1.44E-11	1.50E+04	2.15B-07
1,2,3,6,7,8-HxCDD	57653-85-7	4.41E-04	3.26E-08	1.00E+00	3.19E-12	1.50E+04	4.78E-08
1,2,3,7,8,9-HxCDD	19408-74-3	9,79E-05	' 3.26E-08	1.00E+00	4.88E-14	1.50E+04	7.32E-10
2,3,7,8-TCDF	51207-31-9	1.50E-06	3,26E-08	1.00E+00		7.50E+04	3.90E-09
1,2,3,7,8-PeCDF	57117-41-6	-1,60E-06	3.26E-08	1.00E+00	5,21E-14	7.50E+04	1.24E-08
	57117-31-4	5.06E-06	. 3.26E-08	1.00E+00	1,65E-13	1.50E+04	1.46E-08
2,3,4,7,8-PeCDF		3.00B-05	3.26E-08	1.00E+00	9.76E-13	1.50E+04	7.14E-09
1,2,3,4,7,8-HxCDF		1,46E-05	3.26E-08	1.00E+00	· 4.76E-13		4.14E-08
1,2,3,6,7,8-HxCDF		8.48E-05	3.26E-08	1.00E+00	2,76E-12	1.50E+04	2.06E-09
2,3,4,6,7,8-HxCDF	 	4.22E-06	3.26E-08	1.00E+00	1.37E-13	1.50E+04	8.27E-07
1,2,3,7,8,9-H×CDF	 	1,69E-03	3.26E-08	1.00E+00	5,51E-11	1.50E+04	
1,2,3,4,7,8-HpCDF		4.51E-05	3,26E-08	1.00E+00	1.47E-12	1.50E+04	2.20E-08
1,2,3,4,7,8,9-HpCDF	 	5.65E-03	3.26E-08	1.00E+00	1.84E-10	1.50E+02	2.76E-08
OCDF	35822-46-9	1.82E-02	3.26E-08	1,00E+00	5.92E-10	1.50E+04	8.88E-06
1.2,3,4,6,7,8-HpCDD	33822-40-9	2.04E-01	3.26E-08	1.00E+00	6.64E-09	1.50E+C2	9.95B-0
OCDD							
norganics	7440-38-2	4.60E+01	3.26E-08	1.00E+00	1.50E-06	1.50E+00	2.25E-0
Arsenic		6.13E+01	3.26E-08	5.00E-01	9.97E-07		NC
Lead	7439-92-1	2,29E+01	3.26E-08	1,00E+00	7,45E-07	<u> </u>	NC.
. Chromium VI	18540-29-9	2,296*01	1,2,202-00				1.34E-0

Lifetime Average Daily Dose (LADD) = EPC * EF * RAF Excess Lifetime Cancer Risk (ELCR____) = LADD * CSF Cumulative ELCR - EELCR

TABLE 17 CALCULATION OF HAZARD INDICES AND RISK ESTIMATES

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

RECEPTOR: EXPOSURE POINT: EXPOSURE PATHWAY: Trespasser/Recreational Re Site Inhalation of Fugitive Dust

		Noncancer Effect	5			
Chemical of Potential Concern	CAS No.	Exposure Point Concentration (EPC)	Noncancer Exposure Factor (EF)	Average Daily Exposure (ADE)	Chronic inhalation Reference Concentration (RfC)	Hazard Quotient (HQ)
F	1	mg/m³		mg/m³	mg/m³	
Diaxins						
2,3,7,8-TCDD	1746-01-6	1.96H-13	1.04E-02	2.04E-15	-	NC
1,2,3,7,8-PeCDD	40321-76-4	3.73E-13	1.04E-02	3.87E-15	-	NC
1,2,3,4,7,8-HxCDD	39227-28-6	9.71E-13	1.04E-02	1.01E-14	-	NC
1,2,3,6,7,8-HxCDD	57653-85-7	1.41E-11	1.04E-02	1.47E-13	-	NC
1,2,3,7,8,9-HxCDD	19408-74-3	3.13E-12	1.04E-02	3.25E-14		NC NC
2,3,7,8-TCDF	51207-31-9	4.80E-14	1.04B-02	4.99E-16	-	NC
1,2,3,7,8-PeCDF	57117-41-6	5.12E-14	1.04E-02	5,32E-16	-	NC
2,3,4,7,8-PeCDF	57117-31-4	1.62E-13	1.04E-02	1.68E-15		NC
1,2,3,4,7,8-HxCDF		9.59E-13	1.04E-02	9.97E-15	-	NC
1,2,3,6,7,8-HxCDF		4.68E-13	1,04E-02	4.86E-15		NCNC
2,3,4,6,7,8-HxCDF		2.71E-12	1.04E-02	2.82E-14		NC
(1,2,3,7,8,9-HxCDF	·	1.35E-13	1.04E-02	1.40E-15		NC
1,2,3,4,7,8-HpCDF		5,42E-11	1.04E-02	5.63E-13	-	NC
1,2,3,4,7,8,9-HpCDF		1.44E-12	1.04E-02	1.50E-14		NC
OCDF		1.81E-10	1.04E-02	1,88E-12	_	NC
1,2,3,4,6,7,8-HpCDD	35822-46-9	5.82E-10	1.04E-02	6.05E-12		NC
OCDD		6.52E-09	1.04E-02	6.78E-11		· NC
norganics						
Arsenic	7440-38-2	1.47E-06	1.04E-02	1.53E-08	2.50E-06	6.12E-03
Lead	7439-92-1	1.96E-06	1.04E-02	2,04E-08	1.00E-03	2.04E-05
Chromium VI	18540-29-9	7.32E-07	1.04E-02	7.61E-09	1.00E-04	7.61E-05
CUMULATIVE HAZARD INDEX	•••••					6.21E-03

Average Daily Dose (ADD) = EPC * 8F Hazard Quotient (HQ_{cose}) = ADE / RIC Cumulanye Hazard Index (HI) = Σ HQ_{cose}

		Cancer Effects				
Chemical of Potential Concern	CAS No.	Exposure Point Concentration (EPC)	Cancer Exposure Factor (EF)	Lifetime Average Daily Dose (LADE)	Inhalation Unit Risk (IUR)	Excess Lifeti Cancer Ris (ELCR)
i !	<u></u>	mu/m³		mg/m	(mg/m³) ⁻¹	
Dioxins						
2,3,7,8-TCDD	1746-01-6	1.96E-13	7.42E-04	1.46E-16	3.30E+05	4.81E-11
1,2,3,7,8-PeCDD	40321-76-4	3.73E-13	7.42E-04	2.77E-16	1.65E+05	4.57B-11
1,2,3,4,7,8-HxCDD	39227-28-6	9.71E-13	7.42E-04	·7.20E-16	3.30E+04	2,38E-11
1,2,3,6,7,8-HxCDD	57653-85-7	1.41E-11	7.42E-04	1.05E-14	1.65E+04	1.73E-10
1,2,3,7,8,9+HxCDD	19408-74-3	3.13E-12	7.42E-04	2.32E-15	3.30E+03	7,67E-12
'2,3,7,8-TCDF	51207-31-9	4.80E-14	7.42E-04	3.56E-17	1.65E+03	5.88E-14
1,2,3,7,8-PeCDF	57117-41-6	5,12E-14.	7.42E-04	3.80E-17	1.65E+03	6.27E-14
2,3,4,7,8-PeCDF	57117-31-4	1.62E-13	7,42E-04	1,20E-16	8.25E+02	9.91E-14
1,2,3,4,7,8-HxCDF		9.59E-13	7.42E-04	7.12E-16	1.65E+02	1.17E-13
1,2,3,6,7,8-HxCDF		4.68E-13	7.42E-04	3.47E-16	8.25E+01	2.87E-14
2,3,4,6,7,8-HxCDF		2.71E-12	7.42E-04	2.01E-15	1.65E+01	3.32E-14
1,2,3,7,8,9-HxCDF		1.35E-13	7.42E-04	1.00E-16	8.25B+00	8.27E-16
1,2,3,4,7,8-HpCDF		5.42E-11	7,42E-04	4.02E-14	1.65E+00	6.63E-14
1,2,3,4,7,8,9-HpCDF		1.44E-12	7.42E-04	1.07E-15	8.25E-01	. 8.84E-16
OCDF		1.81E-10	7.42E-04	1.34E-13	1.65E-03	2.21E-16
1,2,3,4,6,7,8-HpCDD	35822-46-9	5.82E-10	7.42B-04	4.32E-13	8,25E-02	3.56E-14
OCDD		6.52E-09	7.428-04	4.84E-12	1,65E-06	7.99E-18
norganics						
(Arsenic	7440-38-2	1.47E-06	7.42E-04	1.09E-09	4.30E+00	4.70E-09
L'ead ;	7439-92-1	1.96E-06	7.42E-04	1.45E-09	-	NC
Chromium VI	18540-29-9	7,32E-07	7,42E-04	5.43E-10	1.20E+01	6.52E-09
CUMULATIVE ELCR	· · · · · · · · · · · · · · · · · · ·					1.15E-08

Lifetime Average Daily Dose (LADE) = EPC * EF
Excess Lifetime Cancer Risk (ELCR_{vess}) = LADE * CSF
Cumulative ELCR = LELCR_{vess}
NC - Not calculated due to lact of information.

TABLE 18 CALCULATION OF HAZARD INDICES AND RISK ESTIMATES

Former Creese & Cook Disposal Site ADDRESS Danvers, Massachusetts

RECEPTOR:	Trespasser/Recreational Receptor		
EXPOSURE POINT:	Site		
EXPOSURE PATHWAY:	Dermal Contact with Sediment	 	

		Noncancei	Effects	,			
Chemical of Potential Concern	CAS No.	Exposure Point Concentration (EPC)	Noncancer Exposure Factor (EF)	Dormal Relative Absorption Factor (RAF)	Average Daily Dose (ADD)	Chronic Dermal Reference Dosé (RfD)	Hazerd Quotient (HQ
		mr/ks		unitiess	mg/kg-day	mg/kg-day	
Dioxins							
2,3,7,8-TCDD	. 1746-01-6	3.285-06	1.82E-05	2.00E-01	1.20E-11		. NC
1,2,3,7,8-PeCDD	40321-76-4	8.87E-06	1.82E-05	2.00E-01	3.23E-11		. NC
1.2.3.4.7.8-HxCDD	39227-28-6	1.60E-05	1.82E-05	. 2.00E-01	5.82E-11	<u> </u>	. NC .
1,2,3,6,7,8-HxCDD	57653-85-7	9.24E-05	1.B2E-05	2,00E-01	3.37E-10		NC NC
1,2,3,7,8,9-HxCDD	19408-74-3	3.77E-05	1.82E-05	2.00E-01	1.37E-10	<u> </u>	NC
2.3.7.8-TCDF	51207-31-9	9,12E-06	1.82E-05	2,00E-01	3,32E-11	<u> </u>	NC
1,2,3,7,8-PeCDF	57117-41-6	3.77E-06	1.82E-05	2.00E-01	1.37E-11		. NC
2.3.4,7,8-PeCDF	57117-31-4	1.48E-05	1.82E-05	2.00E-01	5,38E-11		NC
1.2,3,4,7,8-HxCDF		2.15E-05	1.82E-05	2.00E-01	7.84E-11 ·		, NC
1,2.3,6,7,8-HxCDF		1.46E-05	1.82E-05	2.00E-01	5.31E-11	<u> </u>	NC .
. 2,3,4,6,7,8-HxCDF		2.52E-05	1.82E-05	2.00E-01	9.19E-11		NC
1.2.3.7.8.9-HxCDF	·	3.22E-06	1.82E-05	2.00E-01	1.17E-11	<u> </u>	NC
1,2,3,4,7,8-HpCDF		4.48E-04	1.82E-05	2.00E-01	1.63E-09		NC
1,2,3,4,7,8,9-HpCDF		1.846-05	1.82E-05	2.00E-01	6.72E-11		NC NC
OCDF		8.63E-04	1.82E-05	2.00E-01	3.14E-09		. NC
1,2,3,4,6,7,8-HpCDD	35822-46-9	2,00E-03	. 1.82E-05	2.00E-01	7.28E-09	-	NC
OCDD _		1.73E-02	1.82E-05	2.00E-01	6.31E-08		NC
Inorganics							
Arsenic	7440-38-2	6,19E+01	1.82E-05	3.00E-02	3.38E-05	3.00E-04	1.13E-01.
Lead	7439-92-1	6.45E+01	1.82E-05	6.00E-03	7.05E-06	7.50E-04	. 9.40E-03
Chromium VI	- 18540-29-9	9,66E+00-	1.82E-05	9.00E-02	1:58E-05	3.00E-03	5.27E-03
CUMULATIVE HAZARD INDEX	die een een een een een een een een een e						1.27E-01

Average Daily Dose (ADD) \Rightarrow EPC * EF * RAF Hazard Quotient (HQ $_{max}$) = ADD / RID Cumulative Hazard Index (HI) = Σ HQ $_{max}$

		Cancer	ffects				,
Chemical of Potential Concern	CAS No.	Exposure Point Concentration (EPC)	Cancer Exposure Factor (EF)	Dermal Relative Absorption Factor (RAF)	Lifetime Average Daily Dose (LADD) mg/kg-day	Dermal Cancer Slope Factor (CSF) (mg/kg-day):	Excess Lifetim Cancer Risk (ELCR)
· · · · · · · · · · · · · · · · · · ·		mg/kg	<u></u>		ing/kg-day	(mpy KE-Bay).	نضنا
Diaxins						3.605+05	1.28E-07
2,3,7,8-TCDD	1746-01-6	3.28B-06	1.30E-06	. 2,00E-01	8.54E-13	1.50E+05	
1,2,3,7,8-PaCDD	40321-76-4	8.87E-06	1.30E-06	2,00E-01	2.31E-12	7,50E+04	1.73E-07
1,2,3,4,7,8-HxCDD	39227-28-6	1.60E-05	1.30E-06	2.00E-01	4.16E-12	1,50E+04	6,24E-08
1,2,3,6,7,8-HxCDD	57653-85-7	9.24E-05	1.30E-06	2.00E-01	2.40E-11	1.50E+04	3.61E-07
1.2.3.7.8.9-HxCDD	19408-74-3	3,77E-05	1.30E-06 ·	2.00E-01	9.81E-12	1.50E+04	1.47E-07
2.3.7.8-TCDF	51207-31-9	9.12E-06	1.30E-06	2.00E-01	2.37E-12	1.50E+04	3.56E-08
1,2,3,7,8-PeCDF	57117-41-6	3.77E-06	1.30E-06	2.00E-01	9.82E-13	7.50E+04	7.36E-08
2,3,4,7,8-PeCDF	57117-31-4	1.48E-05	1.30E-06	2.00E-01	3.84E-12	7.50E+04	2.88E-07
1.2.3.4.7.8-HxCDF		2,15B-05	1.30E-06	2.00E-01	5.60E-12	1.50E+04	8.39E-08
1,2,3,6,7,8-HxCDF		1.46E-05	1,30E-06	2.00E-01	3.79E-12	1.50E+04.	. 5.68E-08
2,3,4,6,7,8-HxCDF		2.52B-05	1.30E-06	2.00E-01	6.57E-12	1.50E+04	. 9.85E-08
1.2.3.7.8.9-HxCDF		3,22E-06	1.30E-06	2.00B-01	8.38E-13	1.50E+04.	1.26E-08
1,2,3,4,7,8-HpCDF		4.48E-04	1,30E-06	2.00E-01	1.17E-10	1.50E+04	1.75E-06
1,2,3,4,7,8,9-HpCDP	<u> </u>	1.84E-05	1,30E-06	2.00E-01	4.80E-12	1.50E+04	7.20E-08
OCDF		8.63E-04	1.30E-06	2.00E-01	2.24E-10	1.50E+02 ·	3.37E-08
1,2,3,4,6,7,8-HpCDD	35822-46-9	2.00E-03	1.30E-06	2.00E-01	5.20E-10	1.50E+04	7.80E-06
OCDD	33002 133	1.73E-02	1.30E-06	2.00E-01	4.51E-09	1.50E+02	6.76E-07.
Inorganics	<u> </u>						
Arsenic	7440-38-2	6.19E+01	1.30E-06	3.00E-02	2.41E-06	1.50E+00	3:62E-06
Lead	7439-92-1	6 45E+01	1.30E-06	6.00E-03	5.03E-07		NC
Chromium VI	18540-29-9	9.66E+00	1.30E-06	9.00E-02	1.13E-06 .		NC
CUMULATIVE ELCR	1						1.55E-05

Lifetime Average Dally Dose (LADD) = EPC * EF * RAF Excess Lifetime Canter Ritk (ELCR_{rest}) = LADD * CSF Cumulative ELCR = EELCR_{rest}

NC = Not calculated due to lack of information.

TABLE 19 CALCULATION OF HAZARD INDICES AND RISK ESTIMATES

Former Creese & Cook Disposal Site 25 Clinton Avenue Danvers, Massachusetts

RECEPTOR:	Trespasser/Recreational Receptor	 	
EXPOSURE POINT:	Site		
EXPOSURE PATHWAY:	Incidental Ingestion of Sediment	 	

		Noncancer	Effects	,	, , , , , , , , , , , , , , , , , , , 		
Chemical of Potential Concern	. CAS No.	Exposure Point Concentration (EPC)	Noncancer Exposure Factor (EF)	Oral Relative Absorption Factor (RAF)	Average Daily Dose (ADD)	Chronic Oral Reference Dose (RfD)	Hazard Quorient (HQ
		mg/kg		unitless	mg/kg-day	mg/kg-day	
Dioxins							
2,3,7,8-TCDD	1746-01-6	3.28E-06	3.06E-07	1.00E+00	1.00E-12		NC
1,2,3,7,8-PeCDD	40321-76-4	8.87E-06	3.06E-07	1.00E+00	2.71E-12		NC
1,2,3,4,7,8-HxCDD	39227-28-6	1.60E-05	3.06E-07	1.00E+00	4.88E-12		NC
1,2,3,6,7,8-HxCDD	57653-85-7	9.24B-05	3,06E-07	1.00E+00	2.82E-11	-	NC
1,2,3,7,8,9-HxCDD	19408-74-3	3.77E-05	3.06E-07	1.00E+00	1.15E-11		NC
2,3,7,8-TCDF	5-1207-31-9	9.12E-06	3.06E-07	1.00E+00	2.79E-12		NC
1,2,3,7,8-PeCDF	57117-41-6	3.77E-06	3,06E-07	1.00E+00	1.15E-12	- '	NC
2,3,4,7,8-PeCDF	57117-31-4	1.48E-05	3,06B-07	1.00E+00	4.51E-12		NC
1,2,3,4,7,8-HxCDF		2.15E-05	3,06E-07	1.00E+00	6.57E-12		NC
1.2.3.6.7.8-HxCDF		1.46E-05	3.06E-07	1.00E+00 .	4.45E-12		NC
2,3,4,6,7,8-HxCDF		2.52E-05	3.06B-07	1.00E+00	7.71B-12		NC.
		3.22E-06	3.06E-07	1.00E+00	9.84E-13	-	NC
1,2,3,7,8,9-HxCDF		4.48E-04	3.06E-07	1:00E+00	1.37E-10	-	NC
1,2,3,4,7,8-HpCDF		1.84E-05	3.06E-07	1.00E+00	5.64E-12		NC .
1,2,3,4,7,8,9-HpCDF		8.63E-04	3.06E-07	1.00E+00	2.64E-10		NC
OCDF	35822-46-9	2.00E-03	3.06E-07	1.00E+00	6.10E-10		NC
1,2,3,4,6,7,8-HpCDD	37822-40-9	1.73E-02	3.06E-07	1.00E+00	5.30E-09	-	NC
OCDD	<u> </u>	1.732-02	5,002 01	1.000	1		
Inorganics	7440-38-2	6.19E+01	3.06E-07	1.00E+00	1.89E-05	3,00E-04	6,30E-02
Arsenic		6.45E+01	3.06E-07	5,00E-01	9.85B-06	7.50E-04	1.31E-02
Lead	7439-92-1	9.66E+00	3.06E-07	1.00E+00	2.95E-06	3.00E-03	9.83E-04
Chromium VI CUMULATIVE HAZARD INDEX	18540-29-9	9.00E+00	1, 3,00E-07	1.002.700	2,735-00		- 7.71E-02

Average Daily Dose (ADD) = EPC * EF * RAF Hazard Quotient (HQ $_{core}$) = ADD / RID Cumulative Hazard Index (HI) = Σ HQ $_{core}$

		Cancer I	Effects			··· ·······	T
Chemical of Potential Concern	CAS No.	Exposure Point Concentration (EPC)	Cancer Exposure Factor (EF)	Oral Relative Absorption Factor (RAF)	Lifetime Average Daily Dose (LADD)	Oral Cancer Slope Factor (CSF)	Excess Lifetin Cancer Risk (ELCR)
•		mg/kg			mg/kg-day	(mg/kg-day) ⁻¹	
Dioxins							T
2.3.7.8-TCDD	1746-01-6	3,28E-06	2.18E-08	1.00E+00	7,16E-14	1.50E+05	1.07E-08
1.2.3.7.8-PcCDD	40321-76-4	8.87E-06	2.18E-08	1.00E+00	1.94E-13	7,50E+04	1,45E-08
1.2.3.4.7.8-HxCDD	39227-28-6	1.60E-05	2.18E-08	1.00E+00	3.49E-13	1,50E+04	5.23E-09
1,2,3,6,7,8-HxCDD	57653-85-7	9.24E-05	2.18E-08	1.00E+00	2.02E-12	1,50E+04	3.03E-08
1,2,3,7,8,9-HxCDD	19408-74-3	3.77E-05	2.18E-08	1.00E+00	8.23E-13	1.50E+04	1.23E-08
2,3,7,8-TCDF	51207-31-9	9.12E-06	2.18E-08	1,00E+00	1.99E-13	1,50E+04	2.99E-09
1,2,3,7,8-PeCDF	57117-41-6	3.77B-06	2,18E-08	1,00E+00	8.23E-14	7.50E+04	6.18E-09
2,3,4,7,8-PeCDF	57117-31-4	1.48E-05	2.18E-08	1,00E+00	3.22E-13	7.50E+04	2.42E-08
1,2,3,4,7,8-H×CDF		2.15E-05	2.18E-08	1,00E+00	4.70E-13	1.50E+04	7.04E-09
1,2,3,6,7,8-HxCDF		1.46E-05	2.18E-08	1.00E+00	3.18E-13	1.50E+04	4.77B-09
2,3,4,6,7,8-HxCDF	 	2.52E-05	2,18E-08	1,00E+00	5.51E-13	1.50E+04	8.26B-09
1,2,3,7,8,9-HxCDF		3.22E-06	2.18E-08	1.00E+00	7.03E-14	1.50E+04	1.05E-09
1,2,3,4,7,8-HpCDF		4.48E-04	2.18E-08	1.00E+00	9.78E-12	1,50E+04	1.47E-07
1,2,3,4,7,8,9-HpCDF	 	1.84E-05	2.18E-08	1.00E+00	4.03E-13	1.50E+04	6.04E-09
		8.63E-04	2.18E-08	1.00E+00	1.88E-11	1.50E+02	2.82E-09
OCDF	35822-46-9	2.00E-03	2.18E-08	1.00E+00	4.36E-11	1,50E+04	6.54E-07
1,2,3,4,6,7,8-HpCDD	33822-40-9	1.73E-02	2,18E-08	1.00E+00	3.78E-10	1.50E+02	5.68E-08
OCDD		1	1		 		
norganics	7440-38-2	6.19E+01	2.18E-08	1.00E+00	1.35E-06	1.50E+00	2.03E-06
Arsenic	7439-92-1	6.45E+01	2.18E-08	5.00E-01	7.04E-07		NC .
Lead	18540-29-9	9.66E+00	2.18E-08	1.00E+00	2,11E-07		NC
Chromium VI	18340-29-9	7.000.700	2, 30-175				3.02E-06

Lifetime Average Daily Dose (LADD) = EPC * EF * RAF Excess Lifetime Cancer Risk (ELCR_{esser}) = LADD * CSF Cumulative ELCR = EELCR_{esser}

12/26/06

Technical Report for

Woodard & Curran

Creese + Cook Danvers MA

210667

Accutest Job Number: M61007

Sampling Dates: 11/21/06 - 11/22/06

Report to:

Woodard & Curran

dmacdonald@woodardcurran.com

ATTN: Dave MacDonald

Total number of pages in report: 89

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Reza Tand Lab Director

Certifications: MA (M-MA136) CT (PH-0109) NH (250204) RI (00071) ME (MA136) FL (E87579) NY (23346) NJ (MA926) NAVY USACE

This report shall not be reproduced, except in its entirety, without the written approval of Accurest Laboratories.

Table of Contents

Sections:

Table of Contents

D	3	ŀ	į
1,344		â	
200			

.40: M61007-40: WC-101
.41: M61007-41: WC-17
65 .42: M61007-42: WC-19
66.43: M61007-43: WC-21
67 M61007-44: WC-25
45· M61007-45· WC-23 68
3.46: M61007-46: WC-27
3.47: M61007-47: WC-28
3.48: M61007-48: WC-18
3.49: M61007-49: WC-26
3.50: M61007-50: WC-22 ,
3.50: M61007-50: WC-22 , 73 3.51: M61007-51: WC-24 . 74
3.52: M61007-52: WC-20
3.53: M61007-53: WC-44
tion 4: Misc Forms

Sample Summary

Woodard & Curran

Creese + Cook Danvers MA Project No: 210667

Job No: M61007

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
M61007-1	11/21/06	15:20 AW	11/22/06	so	Sediment	WC-SED-18
M61007-2	11/21/06	15:00 AW	11/22/06	so	Sediment	WC-SED-20
M61007-3	11/22/06	06:50 AW	11/22/06	so	Sediment	WC-SED-19
M61007-4	11/22/06	07:15 AW	11/22/06	so	Sediment	WC-SED-17
M6100745	11/22/06	07:20 AW	11/22/06	so	Sediment	WC-SED-13
M61007-6	11/22/06	07:30 AW	11/22/06	SO	Sediment	WC-SED-11
*M61007⊧7	11/22/06	07:40 AW	11/22/06	so	Sediment	WC-SED+9
M61007-8	11/22/06	07:50 AW	11/22/06	so	Sediment	WC-SED-7
M61007-9	11/22/06	08:00 AW	11/22/06	SO -	Sediment	WC-SED-3
M61007-10	11/22/06	08:50 AW	11/22/06	so	Sediment	WC-SED-12
M61007-11	11/22/06	08:55 AW	11/22/06	so	Sediment	WC-SED-10
M61007-12	11/21/06	09:10 AW	11/22/06	so	Soil	WC-41
M61007-13	11/21/06	09:25 AW	11/22/06	SO	Soil	WC-42

Woodard & Curran

Creese + Cook Danvers MA Project No: 210667

Jób No:

M61007

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
M61007-14	11/21/06	09:30 AW	11/22/06	so	Soil	WC-43
M61007-15	11/21/06	10:10 AW	11/22/06	so	Soil	WC416
M61007-16	11/21/06	10:20 AW	11/22/06	SO {	Soil	WC-15
M61007-17	11/21/06	10:35 AW	11/22/06	so	Soil	WC-14
M61007-18	11/21/06	10:40 AW	11/22/06	SO :	Soil	WC-13
M61007-19	11/21/06	11:00 AW	11/22/06	so :	Soil	WC-1
M61007-20	11/21/06	11:05 AW	11/22/06	so	Soil	WC-2
M61007-21	11/21/06	11:10 AW	11/22/06	so	Soil	WC-3
M61007-22	11/21/06	11:15 AW	11/22/06	so	Soil	WG-4
M61007-23	11/21/06	11:20 AW	11/22/06	so	Soil	W.C-5
M61007-24	11/21/06	11:25 AW	11/22/06	s so	Soil	WC*6
M61007-25	11/21/06	3 11:30 AW	11/22/0	s SO	Soil	WC-7
M61007-26	5	3 11:35 AW	11/22/0	s SO	Soil	WC-8

Woodard & Curran

Creese + Cook Danvers MA Project No: 210667

Job No:

M61007

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
M61007-27	11/21/06	11:40 AW	11/22/06	so	Soil	WC.9
M61007-28	11/21/06	11:45 AW	11/22/06	so	Soil	WC+LO
M61007-29	11/21/06	11:50 AW	11/22/06	so	Soil	WC11
M61007-30	11/21/06	11:55 AW	11/22/06	so	Soil	WC =12
M61007431	11/21/06	14:55 AW	11/22/06	so	Sediment	WC:SED-14
M61007-32	11/21/06	15:10 AW	11/22/06	so	Sediment	WC-SED-15
M61007-33	11/21/06	15:15 AW	11/22/06	so	Sediment	WC-SED-16
M61007-34	11/22/06	09:00 AW	11/22/06	so	Sediment	WC:SED-8
M61007-35	11/22/06	09:10 AW	11/22/06	so	Sediment	WC-SED-6
M61007-36	11/22/06	09:25 AW	11/22/06	so	Sediment	WC:SED:5
M61007-37	11/22/06	09:35 AW	11/22/06	SO.	Sediment	WCSED4
M61007-38	11/22/06	09:40 AW	11/22/06	so	Sediment	WC-SED-2
M61007-39	11/22/06	09:45 AW	11/22/06	. Ş O	Sediment	WC-SED-1
· · · · · · · · · · · · · · · · · · ·	•					

Woodard & Curran

Creese + Cook Danvers MA Project No: 210667

M61007 Job No:

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID	
M61007-40	11/22/06	12:10 AW	11/22/06	so	Soil	WC-101	
M61007-41	11/22/06	11:00 AW	11/22/06	sò	Soil	WC∗17	
M61007-42	11/22/06	11:10 AW	11/22/06	SO	Soil	WC-19	1900/01/2016
M61007-43	11/22/06	11:20 AW	11/22/06	SO	Soil	WC-21	
M61007-44	11/22/06	11:40 AW	11/22/06	ŚO	Soil	WG-25	#\$355.357 % #\$55
M61007-45	11/22/06	11:30 AW	11/22/06	SO.	Soil	WC-23	
M610 07 -46	11/22/06	11:50 AW	11/22/06	SO	Soil	WC-27	
M61007-47	11/22/06	11:55 AW	11/22/06	so	Soil	WC-28	
M61007-48	11/22/06	11:05 AW	11/22/06	so	Soil	WC-18	
M61007-49	11/22/06	11:45 AW	11/22/06	so	Soil	WC-26	
M61007-50	11/22/06	11:25 AW	11/22/06	so	Soil	WC-22	
M61007-51	11/22/06	11:35 AW	11/22/06	s SO	Soil	WC-24	
M61007-52	11/22/06	11:15 AW	11/22/06	s so	Soil	WC-20	
						•	

Woodard & Curran

Job No:

M61007

Creese + Cook Danvers MA Project No: 210667

Sample Number		Time By	Received	Matrix Code Type	Client Sample ID
M61007-53	11/22/06	12:05 AW	11/22/06	SO Soil	WG-44

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client:

Woodard & Curran

Job No

M61007

Site:

Creese + Cook Danvers MA

Report Date

12/21/2006 5:11:22 PM

53 Sample(s) were collected on between 11/21/2006 and 11/22/2006 and were received at Accutest on 11/22/2006 properly preserved, at 2.1 Deg. C and intact. These Samples received an Accutest job number of M61007. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report. Analysis of Dioxin performed by Paradigm Analytical Labs, Inc. Data package attached.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

Matrix SO

Batch ID: MP9645

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61214-3DUP, M61214-3MS, M61214-3SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Arsenic are outside control limits for sample MP9645-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Wet Chemistry By Method CORP ENG 81 M

Matrix SO

Batch ID: GP7319

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61158-23DUP, M61158-23MS were used as the QC samples for Total Organic Carbon.

Wet Chemistry By Method EPA 160.3 M

Matrix SO

Batch ID: GN21331

Sample(s) M61005-1DUP were used as the QC samples for Solids, Percent.

Matrix SO

Batch ID: GN21341

Sample(s) M61007-32DUP were used as the QC samples for Solids, Percent.

Matrix SO

Batch ID: GN21345

Sample(s) M61007-52DUP were used as the QC samples for Solids, Percent.

Matrix SO

Batch ID: GN21348

Sample(s) M61068-2DUP were used as the QC samples for Solids, Percent

Page 1 of 3.

9 of 89 Page 67 of

Wet Chemistry By Method MA DEP

Matrix SO

Batch ID: GP7305

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61007-22DUP, M61007-22MS were used as the QC samples for PAC Cyanide.

Wet Chemistry By Method SW846 3060A/7196A

Matrix SO

Batch ID: GN21358

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61068-2DUP, M61068-2MS were used as the QC samples for Chromium, Hexavalent.

Matrix SO

Batch ID: GN21431

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61007-22DUP, M61007-22MS were used as the QC samples for Chromium, Hexavalent.

Matrix SO

Batch ID: GN21433

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61007-26DUP, M61007-26MS were used as the QC samples for Chromium, Hexavalent.

Matrix SO

Batch ID: GN21435

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61123-4DUP, M61123-4MS were used as the QC samples for Chromium, Hexavalent.

Thursday, December 21, 2006

Page 2 of 3

Wet Chemistry By Method SW846 9012 M

Matrix SO

Batch ID: GP729

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M60895-8DUP, M60895-8MS were used as the QC samples for Cyanide.

Matrix SO

Batch ID: GP7295

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61007-17DUP, M61007-17MS were used as the QC samples for Cyanide.

Matrix SO

Batch ID: GP7299

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61007-43DUP, M61007-43MS were used as the QC samples for Cyanide.

Matrix SO

Batch ID: GP7301

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) M61068-2DUP, M61068-2MS were used as the QC samples for Cyanide.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (M61007).

		1110
Sam	ALC: NE	1113

Report of Analysis

Report of Analysis

Client Sample ID: WC-SED-18

Lab Sample ID: Matrix:

M61007-1 SO - Sediment Date Sampled: 11/21/06

Date Received: 11/22/06

Percent Solids: 18.6

Project:

Creese + Cook Danvers MA

RL

Metals Analysis

Analyte

Result

Units DF Prep

Analyzed By

Method

Prep Method

Chromium

445 3.1

mig/kg 1

12/04/06 12/06/06 PY

SW846 6010B 1

SW846 3050B ²

(1) Instrument QC Batch: MA7630

(2) Prep QC Batch: MP9645

RL = Reporting Limit

Report of Analysis

Page 1 of 1

Client Sample ID: WC-SED-18 Lab Sample ID: M61007-1

Matrix:

SO - Sediment

Date Sampled: 11/21/06 Date Received: 11/22/06

Percent Solids: 18.6

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	<11 <1.3 18.6	11 1.3	mg/kg mg/kg %	1 1 1	11/30/06 11/30/06 18:27 11/27/06	MA MA NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Client Sample ID: WC-SED-20 Lab Sample ID: M61007-2

Matrix:

SO - Sediment

Date Sampled: 11/21/06
Date Received: 11/22/06

Percent Solids: 54.2

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result	RL	Units DF	Analyzed	Вý	Method
Chromium, Hexavalent Cyanide PAC Cyanide Solids, Percent	19.9 < 0.61 < 0.45 54.2	0.61 0.45	mg/kg 1 mg/kg 1 mg/kg 1 % 1	11/30/06 11/30/06 18:28 12/03/06 16:27 11/27/06		SW846 3060A/7196A SW846 9012 M MA DEP EPA 160.3 M

Report of Analysis

Client Sample ID: WC-SED-19

Lab Sample ID: M61007-3 Matrix: SO - Sedim

 M61007-3
 Date Sampled:
 11/22/06

 SO - Sediment
 Date Received:
 11/22/06

 Percent Solids:
 72.7

Project: Creese + Cook Danvers MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	< 2.8 < 0.59		mg/kg mg/kg %	1 1	11/30/06 12/03/06 13:20 11/27/06	MA MA NI	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Client Sample ID: WC-SED-17 Lab Sample ID: M61007-4

Matrix:

SO - Sediment

Date Sampled: 11/22/06

Date Received: 11/22/06

Percent Solids: 53.0

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Вÿ	Method
Chromium, Hexavalent Cyanide Solids, Percent Total Organic Carbon	<3.8 <0.55 53 41600	3.8 0.55 1800	mg/kg mg/kg % mg/kg	1 1 1 1	11/30/06 12/03/06 13:22 11/27/06 12/07/06 12:57	NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M CORP ENG 81 M

Client Sample ID: WC-SED-13

Lab Sample ID: Matrix:

M61007-5 SO - Sediment Date Sampled: 11/22/06

Date Received: 11/22/06

Percent Solids: 55.9

Project:

Creese + Cook Danvers MA

Metals Analysis

Analyte Result RLUnits DF Analyzed By Method Prep Method SW846 3050B ² Chromium mg/kg 1 12/04/06 12/06/06 PY SW846 6010B 1

(1) Instrument QC Batch: MA7630

(2) Prep QC Batch: MP9645

Client Sample ID: WC-SED-13

Lab Sample ID:

M61007-5

SO - Sediment

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 55.9

Project:

Matrix:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF .	Analyzed	Вÿ	Method
Chromium, Hexavalent Cyanide Solids, Percent	<3.6 <0.77 55.9	3.6 0.77	mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 13:23 11/27/06	MA MA NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Client Sample ID: Lab Sample ID:

WC-SED-11

Matrix:

M61007-6

SO - Sediment

Date Sampled: 11/22/06

Date Received: 11/22/06 Percent Solids: 48.6

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide	4.6 4.1 <0.63 0.63	mg/kg mg/kg	1	11/30/06 12/03/06 13:24	MA MA	SW846 3060A/7196A SW846 9012 M
Solids, Percent	48.6	% .	1	11/27/06	NJ	EPA 160.3 M

Report of Analysis

Client Sample ID: Lab Sample ID:

WC-SED-9

M61007-7 SO - Sediment Date Sampled: 11/22/06 Date Received: 11/22/06

Matrix: Project:

Creese + Cook Danvers MA

Percent Solids: 46.2

Metals Analysis

Prep Method Analyzed By Method RL Units DF Prep Analyte Result SW846 6010B 1 SW846 3050B 2 12/04/06 12/06/06 PY 1710 2.1 mg/kg 1 Chromium

(1) Instrument QC Batch: MA7630 (2) Prep QC Batch: MP9645

Client Sample ID: WC-SED-9 Lab Sample ID: M61007-7

Matrix:

SO - Sediment

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 46.2

Project:

Creese + Cook Danvers MA

Analyte	Result	RL .	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide	4.8 <0.73	4.3 0.73	mg/kg mg/kg	1 1	11/30/06 12/03/06 13:25	MA MA	SW846 3060A/7196A SW846 9012 M
Solids, Percent Total Organic Carbon	46.2 49700		% mg/kg	1	11/27/06 12/07/06 13:09	NJ ,	EPA 160.3 M CORP ENG 81 M

Client Sample ID: WC-SED-7 M61007-8 Lab Sample ID:

SO - Sediment

Date Sampled: 11/22/06

Date Received: 11/22/06

Percent Solids: 52.7

Project:

Matrix:

Creese + Cook Danvers MA

* (4. p.)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	3.9	3.8	mg/kg	1	11/30/06		SW846 3060A/7196A
Cyanide	< 0.62	0.62	mg/kg	1	12/03/06 13:26	MA	SW846 9012 M
Solids, Percent	52,7		%	1	11/27/06	NJ	EPA 160.3 M

WC-SED-3 Client Sample ID:

Lab Sample ID:

M61007-9

Date Sampled: 11/22/06

Matrix:

SO - Sediment

Date Received:

11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 53.2

Metals Analysis

Analyzed By Method Prep Method Analyte Result RL Units DF SW846 3050B ² 12/04/06 12/06/06 PY SW846 6010B 1 Chromium 91.9 mg/kg 1

(1) Instrument QC Batch: MA7630

(2) Prep QC Batch: MP9645

Page 1 of 1

Client Sample ID: Lab Sample ID:

WC-SED-3

M61007-9 SO - Sediment Date Sampled: 11/22/06

Date Received: 11/22/06

Percent Solids: 53.2

Project:

Matrix:

Creese + Cook Danvers MA

Analyte	Result	ŘL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent Total Organic Carbon	<3.8 <0.45 53.2 34900	0.45	mg/kg mg/kg % mg/kg	1 1 1	11/30/06 12/03/06 13:27 11/27/06 12/07/06 13:23	MA NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M CORPIENG 81 M

Page 1 of 1

Client Sample ID: WC-SED-12 Lab Sample ID: M61007-10

Matrix: SO - Sediment

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 22.9

Project: Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide PAC Cyanide Solids, Percent	<8.7 <0.89 <0.92 22.9	0.89 0.92	mg/kg mg/kg mg/kg %	1 1 1	11/30/06 12/03/06 13:28 12/03/06 16:28 11/27/06		SW846 3060A/7196A SW846 9012 M MA DEP EPA 160.3 M

Page 1 of 1

Client Sample ID: Lab Sample ID: WC-SED-10 M61007-11

Matrix:

SO - Sediment

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 31.5

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	< 6.3 < 0.79 31.5	6.3 0.79	mg/kg mg/kg %	1 1 1 1	11/30/06 12/03/06 13:29 11/27/06		SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Report of Analysis

Client Sample ID: Lab Sample ID: WC-41 M61007-12 Matrix: SO - Soil

Date Sampled: 11/21/06 Date Received: 11/22/06 Percent Solids: 81.2

Project:

Creese + Cook Danvers MA

Analyte	Result RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	13.1 2.5	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	0.84 0.61	mg/kg	1	11/30/06 18:2	9 MA	SW846 9012 M
Solids, Percent	81.2	%	1	11/27/06	NJ	EPA 160.3 M

Page 1 of 1

Report of Analysis

WC-42 Client Sample ID: M61007-13 Date Sampled: 11/21/06
Date Received: 11/22/06 Lab Sample ID:

SO - Soil Matrix: Percent Solids: 93.8

Creese + Cook Danvers MA Project:

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic Chromium	12.8 22.2	1866	mg/kg mg/kg	1 .		12/06/06 PY 12/06/06 PY	SW846.6010B ¹ SW846.6010B ¹	SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA7630

(2) Prep QC Batch: MP9645

Page 1 of 1

Client Sample ID: WC-42

Lab Sample ID: M61007-13 Matrix: SO - Soil

Date Sampled: 11/21/06

Percent Solids: 93.8

Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	< 2.1 < 0.50 93.8	2.1 0.50	mg/kg mg/kg %	1 1 1	12/08/06 11/30/06 18:30 11/28/06	MA MA NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Client Sample ID:

WC-43 M61007-14

Lab Sample ID: Matrix:

SO - Soil

Date Sampled: 11/21/06 Date Received: 11/22/06

Percent Solids: 84.7

Project:

Creese + Cook Danvers MA

Analyte	Result RL	Units	ĎF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide PAC Cyanide	<2.4 2.4 <0.55 0.55 <0.55 0.55		1 1 1	12/08/06 11/30/06 18:31 12/03/06 16:29		ŚW846 8060A/7196A SW846 9012 M MA DEP
Solids, Percent	84.7	%	. 1	11/28/06	NĴ	EPA 160.3 M

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix:

WC-16 M61007-15

SQ - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06 Percent Solids: 80.9

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 2.5	2.5	mg/kg	1 .	12/08/06	MA	SW846 3060A/7196A
Cyanide	<0.56	0.56	mg/kg	1	11/30/06 18:32	MA	SW846 9012 M
PAC Cyanide	< 0.60	0.60	mg/kg	1	12/03/06 16:32	MA	MA DEP
Solids, Percent	80.9	84.	%	1.	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Report of Analysis

Client Sample ID: WC-15 M61007-16 Lab Sample ID: Matrix:

SO - Soil

Date Sampled: 11/21/06 Date Received: 11/22/06

Percent Solids: 91.3

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	14.7	0.53	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	<0.53		mg/kg	1	11/30/06 18:33	MA	SW846 9012 M
Solids, Percent	91.3		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-14 Lab Sample ID:

M61007-17

Matrix:

SO - Soil

Date Sampled: 11/21/06
Date Received: 11/22/06

Percent Solids: 86.9

Project:

Creese + Cook Danvers MA

Metals Analysis

Analyte	Result	RL	Units	DF ·	Prep	Analyzed By	Method	Prep Method
Arsenic Chromium	41.4 264		mg/kg mg/kg		-,	12/06/06 PY 12/06/06 PY	SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA7630

(2) Prep QC Batch: MP9645

Page 1 of 1

Client Sample ID: WC-14

Lab Sample ID:

M61007-17

Date Sampled: 11/21/06

Matrix:

SO - Soil

Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 86.9

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	27.7 <0.56 86.9	2.3 0.56	mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 12:48 11/28/06	MA MA NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-13 Lab Sample ID: M61007-18

SO - Soil

Date Sampled: 11/21/06 Date Received: 11/22/06 Percent Solids: 86.2

Matrix: Project:

Creese + Cook Danvers MA

Analyte		Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	•	21.2 <0.55 86.2	2.3 0.55	mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 12:49 11/28/06	MA MA NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Client Sample ID:

WC-1

M61007-19

Lab Sample ID: Matrix:

SO - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06

Percent Solids: 77.2

Project:

Creese + Cook Danvers MA

Analyte	Result RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	14.9 2.6 <0.63 0.6 77.2		1 1 1 1	12/08/06 12/03/06 12:50 11/28/06	MA MA NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-2 Lab Sample ID: M61007-20

Matrix:

SO - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06 Percent Solids: 81.0

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	<2,5 <0:61 81	2.5 0.61	mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 12:53 11/28/06		SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-3

Lab Sample ID: M61007-21

Matrix:

SO - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06 Percent Solids: 80.0

Project:

Creese + Cook Danvers MA

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic Chromium	77.1 1070		mg/kg mg/kg			12/06/06 PY 12/06/06 PY	SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA7630

(2) Prep QC Batch: MP9645

Page 1 of 1

Client Sample ID: WC-3

Lab Sample ID: M61007-21

Matrix:

SO - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 80.0

General Chemistry

Analyte	Result RL	Units DF	Analyzed B	y Method
Chromium, Hexavalent	<2.5 2.5	mg/kg 1	12/08/06 M	IA SW846 9012 M
Cyanide	<0.53 0.53	mg/kg 1	12/03/06 12:54 M	
Solids, Percent	80	% 1	11/28/06 N	

Page 1 of 1

Client Sample ID: Lab Sample ID:

WC-4 M61007-22

Matrix:

SO - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06

Percent Solids: 91.1

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide PAC Cyanide Solids, Percent	2.6 <0.47 <0.49 91.1		mg/kg mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 12:54 12/03/06 16:27 11/28/06		SW846 3060A/7196A SW846 9012 M MA DEP EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-5

Lab Sample ID: M61007-23

Matrix:

SO - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06 Percent Solids: 79.9

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	17.1 < 0.59 79.9	2.5 0.59	mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 12:55 11/28/06	MA MA NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

WC-6 Client Sample ID:

Lab Sample ID:

M61007-24 SO - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06

Percent Solids: 86.1

Project:

Matrix:

Creese + Cook Danvers MA

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic Chromium	59.5 128	2.1	mg/kg mg/kg			12/06/06 PY 12/06/06 PY		SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA7630

(2) Prep QC Batch: MP9645

Page 1 of 1

WC-6

Client Sample ID: Lab Sample ID:

Matrix:

M61007-24 SO - Soil

Date Sampled: 11/21/06 Date Received: 11/22/06

Percent Solids: 86.1

Project:

Creese + Cook Danvers MA

Analyte	Result	ŖL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	3.8 <0.53 86.1	2.3 0.53	mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 12:56 11/28/06	MA MA NJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Client Sample ID: Lab Sample ID:

WC-7 M61007-25

SO - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06

Project:

Matrix:

Creese + Cook Danvers MA

Percent Solids: 87.1

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	43.3		mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	<0.49		mg/kg	1	12/03/06 12:57	MA	SW846 9012 M
Solids, Percent	87.1		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-8 Lab Sample ID: M6100 M61007-26 SO - Soil Matrix:

Date Sampled: 11/21/06

Percent Solids: 82.4

Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide PAC Cyanide Solids, Percent	77.8 < 0.60 < 0.58 82.4	0.60	mg/kg mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 12:58 12/03/06 16:33 11/28/06		SW846 3060A/7196A SW846 9012 M MA DEP EPA 160.3 M

Client Sample ID:

WC-9

Date Sampled: 11/21/06

Läb Sample ID: Matrix:

M61007-27 SO - Soil

Date Received: 11/22/06 Percent Solids: 81.3

Project:

Creese + Cook Danvers MA

Metals Analysis

Analyte	`.	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic Chromium		83.5 370		mg/kg mg/kg	-		12/06/06 PY 12/06/06 PY		SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA7630 (2) Prep QC Batch: MP9645

Page 1 of 1

Client Sample ID: WC-9

Lab Sample ID: M61007-27

Matrix:

SO - Soil

Date Sampled: 11/21/06

Date Received: 11/22/06

Percent Solids: 81.3

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	17:4 < 0.55 81.3	2.5 0.55	mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 12:59 11/28/06	MA MA NI	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Client Sample ID: Lab Sample ID:

WC-10

M61007-28 SO - Soil Date Sampled: 11/21/06

Date Received: 11/22/06

Project:

Matrix:

Creese + Cook Danvers MA

Percent Solids: 68.5

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	333	0.69	mg/kg	5	12/08/06	MA	SW846 3060A/7196A
Cyanide	<0.69		mg/kg	1	12/03/06 13:00	MA	SW846 9012 M
Solids, Percent	68.5		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-11 Lab Sample ID: M61007-29 Matrix: SO - Soil

Date Sampled: 11/21/06 Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 78.8

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 2.5		mg/kg	1	12/08/06		SW846 3060A/7196A
Cyanide	< 0.61	0.61	mg/kg	1	12/03/06 13:01	MA	SW846 9012 M
Solids, Percent	78.8	1930	% ~	1	11/28/06	NJ .	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-12 Lab Sample ID: M61007 M61007-30 SO - Soil Matrix:

Date Sampled: 11/21/06 Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 78.9

esult RL	Units	DF	Analyzed	Ву	Method
±0.55 0.55 <0.58 0.58	mg/kg	1 1 1	12/03/06 16:35	MA	SW846 3060A/7196A SW846 9012 M MA DEP EPA 160.3 M
	8.6 2.5 ≤0.55 0.55	8.6 2.5 mg/kg <0.55 0.55 mg/kg <0.58 0.58 mg/kg	8.6 2.5 mg/kg 1 <0.55 0.55 mg/kg 1 <0.58 0.58 mg/kg 1	8.6 2.5 mg/kg 1 12/08/06 0.55 0.55 mg/kg 1 12/03/06 13:03 0.58 0.58 mg/kg 1 12/03/06 16:35	8.6 2.5 mg/kg 1 12/08/06 MA = 0.55 0.55 mg/kg 1 12/03/06 13:03 MA = 0.58 0.58 mg/kg 1 12/03/06 16:35 MA

Page 1 of 1

Client Sample ID: WC-SED-14 Lab Sample ID: M61007-31 Matrix:

SO - Sediment

Date Sampled: 11/21/06 Date Received: 11/22/06 Percent Solids: 29.9

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent Total Organic Carbon	< 6.7 < 0.85 29.9 937.00	6.7 0.85 3200	mg/kg mg/kg % mg/kg	1 1 1	12/08/06 12/03/06 13:04 11/28/06 12/07/06 13:35	MA MA NJ ÇF	SW846 3060A/7196A SW846 9012 M EPA 160.3 M CORP ENG 81 M

Page 1 of 1

Client Sample ID: Lab Sample ID:

WC-SED-15 M61007-32

Matrix:

SO - Sediment

Date Sampled: 11/21/06

Date Received: 11/22/06 Percent Solids: 60.4

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 3.3	0.50	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.50		mg/kg	1	12/03/06 13:05	MA	SW846 9012 M
Solids, Percent	60.4		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-SED-16 Lab Sample ID:

M61007-33

Matrix:

SO - Sediment

Date Sampled: 11/21/06

Date Received: 11/22/06 Percent Solids: 48.7

Project:

Creese + Cook Danvers MA

Metals Analysis

Analyte	Result RL	Units DF	Prep Analyzed By	Method	Prep Method
Chromium	1320 1.5	mg/kg 1	12/04/06 12/06/06 PY	SW846 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA7630 (2) Prep QC Batch: MP9645

Page 1 of 1

Client Sample ID: WC-SED-16 Lab Sample ID:

M61007-33

Date Sampled: 11/21/06

Matrix:

SO - Sediment

Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 48.7

Analyte	Result	ŘL	Units	DF	Analyzed	Вý	Method
Chromium, Hexavalent Cyanide PAC Cyanide Solids, Percent	114 < 0.54 < 0.55	0.54	mg/kg mg/kg mg/kg %	5 1 1	12/08/06 12/03/06 13:06 12/03/06 16:36 11/28/06		SW846 3060A/7196A SW846 9012 M MA DEP EPA 160.3 M

Page 1 of 1

Report of Analysis

WC-SED-8 Client Sample ID: Lab Sample ID: M61007-34 Matrix:

SO - Sediment

Date Sampled: 11/22/06 Date Received: 11/22/06 Percent Solids: 50.7

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<3.9 3.9	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.68 0.6	mg/kg	1	12/03/06 13:30	MA	SW846 9012 M
PAC Cyanide	< 0.71 0.7	mg/kg	1	12/03/06 16:36	MA	MA DEP
Solids, Percent	50.7	%	1	11/28/06	NJ	EPA 160.3 M
Total Organic Carbon	30900 190	0 mg/kg	1	12/07/06 14:01	CF	CORP ENG 81 M

Page 1 of 1

Client Sample ID: Lab Sample ID:

WC-SED-6 M61007-35

Matrix:

SO - Sediment

Date Sampled: 11/22/06

Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 42.6

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	916	1.5	mg/kg	1	12/04/06	12/06/06 PY	SW846 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA7630

(2) Prep QC Batch: MP9645

Page 1 of 1

Client Sample ID: Lab Sample ID:

WC-SED-6 M61007-35 SO - Sediment

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 42.6

Project:

Matrix:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<4.7	4.7	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.54	0.54	mg/kg	1	12/03/06 13:30	MA	SW846 9012 M
Solids, Percent	42.6		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix:

WC-SED-5 M61007-36 SO - Sediment

Date Sampled: 11/22/06 Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 24.3

General Chemistry

Analyte	Result	ŘL	Units	DF	Analyzed	Вy	Method
Chromium, Hexavalent Cyanide Solids, Percent	<8.2 <0.94 24.3	8.2 0.94	mg/kg mg/kg %	1 1 1 .	12/08/06 12/03/06 13:33 11/28/06		SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-SED-4 Lab Sample ID:

M61007-37

Date Sampled: 11/22/06

Matrix:

SO - Sediment

Date Received: 11/22/06

Percent Solids: 19.4

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed -	Ву	Method
Chromium, Hexavalent Cyanide PAC Cyanide Solids, Percent	<10 <1.1 <1.1	10 1.1 1.1	mg/kg mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 13:34 12/03/06 16:37 11/28/06	MA MA MA NJ	SW846 3060A/7196A SW846 9012 M MA DEP EPA 160.3 M

Page 1 of 1

Client Sample ID: Lab Sample ID: WC-SED-2 M61007-38 SO - Sediment Matrix:

Date Sampled: 11/22/06 Date Received: 11/22/06

Creese + Cook Danvers MA

Percent Solids: 27.4

General Chemistry

Project:

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent Total Organic Carbon	<7.3 <0.68 27.4 113000	0.68	mg/kg mg/kg % mg/kg	1 1 1	12/08/06 12/03/06 13:35 11/28/06 12/07/06 14:14	MA MA NJ CF	SW846 3060A/7196A SW846 9012 M EPA 160.3 M CORP ENG 81 M

Page 1 of 1

Client Sample ID: WC-SED-1 Lab Sample ID: M61007-39 Matrix:

SO - Sediment

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 26.0

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<7.7	7.7	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	<1.0	1.0	mg/kg	1	12/03/06 13:36		SW846 9012 M
Solids, Percent	26		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: Lab Sample ID:

WC-101

Matrix:

M61007-40 SO - Soil

Date Sampled: 11/22/06

Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 78.4

Analyte	Result	RL	Units	DF	Analyzed	Вý	Method
Chromium, Hexavalent	<2.6	0.63	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	<0.63		mg/kg	1	12/03/06 13:37	MA	SW846 9012 M
Solids, Percent	78.4		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-17 Lab Sample ID: M61007 M61007-41 SO - Soil Matrix:

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 85.9

Project:

Creese + Cook Danvers MA

Analyte	Result RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	5.5 2.3	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.54 0.54	mg/kg	1	12/03/06 13:38	MA	SW846 9012 M
Solids, Percent	85.9	% .	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-19 Lab Sample ID: M61007

M61007-42 SO - Soil

Matrix:

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 90.9

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result	ŘL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	5.8	0.52	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.52		mg/kg	1	12/03/06 13:39	MA	SW846 9012 M
Solids, Percent	90.9		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-21

M61007-43 Lab Sample ID:

Matrix:

SO - Soil

Date Sampled: 11/22/06

Date Received: 11/22/06

Percent Solids: 71.8

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<2.8	2.8	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.63	0.63	mg/kg	1	12/03/06 13:18	MA	SW846 9012 M
Solids, Percent	71.8	Ä.	%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-25 Lab Sample ID: M61007-44 Matrix: SO - Soil

Date Sampled: 11/22/06 **Date Received:** 11/22/06

Percent Solids: 83.7

Project: Creese + Cook Danvers MA

Analyte	Result	ŔĹ	Units	DF	Analyzed	Вÿ	Method
Chromium, Hexavalent Cyanide Solids, Percent	9.4 <0.54 83.7	2.4 0.54	mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 14:04 11/28/06	MA MA ÑJ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Client Sample ID:

Lab Sample ID:

WC-23 M61007-45

Matrix:

SO - Soil

Date Sampled: 11/22/06

Date Received: 11/22/06

Percent Solids: 77.7

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 2:6		mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.59		mg/kg	1	12/03/06 14:05	MA	SW846 9012 M
Solids, Percent	77.7		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-27 Lab Sample ID: M61007-46 Matrix: SO - Soil

Soil Date I

Date Sampled: 11/22/06 Date Received: 11/22/06 Percent Solids: 79.1

Project:

Creese + Cook Danvers MA

in English

Analyte	Result	RL	Units	DF.	Analyzed	Ву	Method
Chromium, Hexavalent	<2,5		mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	<0.57		mg/kg	1	12/03/06 14:06	MA	SW846 9012 M
Solids, Percent	79.1		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Report of Analysis

Client Sample ID: Lab Sample ID: WC-28 M61007-47 Matrix:

SO - Soil

Date Received: 11/22/06

Date Sampled: 11/22/06

Percent Solids: 80.9

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	5.0	2.5	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.60	0.60	mg/kg	1	12/03/06 14:07	MA	SW846 9012 M
PAC Cyanide	< 0.59	0.59	mg/kg	1	12/03/06 16:38	MA	MA DEP
Solids, Percent	80.9		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-18 Lab Sample ID: M61007-48

Date Sampled: 11/22/06

Matrix:

SO - Soil

Date Received: 11/22/06

Project:

Creese + Cook Danvers MA

Percent Solids: 85.5

General Chemistry

Analyte	Result	ŔL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Cyanide Solids, Percent	8:4 <0.54 85:5	2.3 0.54	mg/kg mg/kg %	1 1 1	12/08/06 12/03/06 14:08 11/28/06	MA MA NĴ	SW846 3060A/7196A SW846 9012 M EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-26 Lab Sample ID: M61007-49

Date Sampled: 11/22/06 Date Received: 11/22/06

Matrix:

SO - Soil

Percent Solids: 73.4

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed By	Method
Chromium, Hexavalent	<2.7		mg/kg	1	12/08/06 MA	SW846 3060A/7196A
Cyanide	<0.62		mg/kg	1	12/03/06 14:09 MA	SW846 9012 M
Solids, Percent	73.4		%	1	11/28/06 NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-22

Lab Sample ID: M61007-50 Matrix: SO - Soil

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 87.3

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	3.5 2.3	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	<0.55 0.55	mg/kg	1	12/03/06 14:10	MA	SW846 9012 M
Solids, Percent	87.3	%	1	11/28/06	NĴ	EPA 160.3 M

Page 1 of 1

Client Sample ID: WC-24
Lab Sample ID: M61007-51
Matrix: SO - Soil

Date Sampled: 11/22/06 Date Received: 11/22/06 Percent Solids: 90.6

Project:

Creese + Cook Danvers MA

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<2.2	. 2.2	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.50	0.50	mg/kg	1 .	12/03/06 14:11		SW846 9012 M
PAC Cyanide	< 0.51	0.51	mg/kg	1	12/03/06 16:39	MA	MA DEP
Solids, Percent	90.6		%	1	11/28/06	NJ	EPA 160.3 M

Page 1 of 1

Client Sample ID: Lab Sample ID: WC-20 M61007-52

SO - Soil Matrix:

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 84.0

Project:

Creese + Cook Danvers MA

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<2.4	2.4	mg/kg	1	12/08/06	MA	SW846 3060A/7196A
Cyanide	< 0.58	0.58	mg/kg	1	12/03/06 14:13	MA	SW846 9012 M
PAC Cyanide	<0.58	0.58	mg/kg	1	12/03/06 16:40	MA	MA DEP
Solids, Percent	84		%	1	11/28/06	ŃĴ	EPA-160.3 M

RL = Reporting Limit

HRS Reference 113

Page 1 of 1

Client Sample ID:

WC-44

Lab Sample ID: Matrix:

M61007-53 SO - Soil

Date Sampled: 11/22/06 Date Received: 11/22/06

Percent Solids: 75.9

Project:

Creese + Cook Danvers MA

Metals Analysis

Analyte Result

RL

Units DF

Analyzed By Prep

Method

Prep Method

Arsenic

mg/kg 1

12/04/06 12/06/06 PY

SW846 6010B 1

SW846 3050B ²

(1) Instrument QC Batch: MA7630(2) Prep QC Batch: MP9645

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of CustodyMCP Form

		OF CUSTO	D'	Y	ACCI	ITEST J	OB #:	M61	007	
ACCUTEST.	MAG	Y CENTER WEST • BUILDING BLBOROUGH, MA 01752	ONE /	15	ACCI	TEST C	NOTE #:			
Laboratories	TEL: 508-4	81-8200 • FAX: 508-481-7753	SAN PER	Mersill.	ANALY	TICAL	INFORMATI	ON G	11.	MATRIX CODES
CLIENT INFORMATION			****	1			7			DW - DRINKING
Woodard & Curran	Creese + Cook		-1		= <u>F</u>		200		11	WATER GW GROUND
NAME 35 New England Bus, Cir., Ste. 180	PROJECT NAME Denvers, MA		_		1 63	ξ	<u>.</u>			WATER WW-WASTE
ADDRESS	LOCATION			<u> </u>	3 0	2				WATER 80 - SOIL
Andreer MA Olyman CITY. STATE ZIP	210667 PROJECT NO.	 	18.4	0 0	200	ž.	ž			GL. SLUDGE
Dave Mac Donald			- 13	(90 10 B)	· 함 .	3	2. 81	l. L		LIQ - OTHER LIQUID
SEND REPORT TO: PHONE # 979~557-4150	FAX 978-557	7946		<u>4</u> -4	Hexavilm Averaic		1 1 .			SOL - OTHER SOLID
	COLLECTION	PRESERVAT	ION .	Cymide	Hexav	1	10].]		3022
SAMPLE FIELD ID / POINT OF COLLECTION		MPLED XELLYN NOWY NOWY NOWY NOWY NOWY NOWY NOWY NO	4	90	4 4	1	<u> - </u>			LAB USE ONLY
-/ WC-SED- 18	11/21/04 15 20 J	P SO I			V_	V			1	
-L WC-SED - 2=		P 50 2		'	/ 概	37				
1-3 WC-5=D-19		W 12	V	'V	$\sqrt{}$	1.				
-Y W= - SED - 17		WIII	П	V	$\sqrt{}$	多、				
-5 WC-SED-13		W 2		/		\vee			-	
-6 WC-SED-11	11/22/W 7:30 A			V	V.					
-7 WG-5ED:7	11/22/06 74C A		1			VV			-	
-8 WE-3ED: 7		J 11		V	V .:					
1-9 WG-5ED-3	11/22/06 800 A	V 2	V	' V		V 1	1			
-70 (WC-SED-12)		rP		11	V ·				ľ	
	0:	7 V	V	1	./					
1-1/ IWC- SED-10	11 - 11-11	RABLE INFORMATION	5747 ···	1. 1 m	The state of the s		OMMENTS/	REMARI	S	description of the second
DATA TURNAROUND INFORMATION	- استخط	HABLE INFORMATION	* Francis	2.1,		·		1		1
14 DAYS STANDARD APPROVED BY:	STANDARD COMMERCIAL "B"		-					100	_//	ــــــــــــــــــــــــــــــــــــــ
L 48 HOUR EMERGENCY	☐ DISK DELIVERABLE ☐ STATE FORMS		- 1-							
OTHER	DOTHER (SPECIFY)		- 1							
DATA UNLESS PREVIOUSLY APPROVED								74+	(1)	
		CH TIME SAMPLES CHANGE PO	DATE	DN, INC	LUDING	COUR	EH DELIVE	17	-	10 mg 2 mg
1. aug 13:50 1.C/	B-Z-	2015	1001	to 16%	00 2		5_	-		<u> </u>
RELINQUISHED BY: DATE TIME: RECEIVED	BY	RECINCUISHED BY	DATE	TIME:	4	tento	334-			
3.			_		UE WAVE DE	4001154	D: 6	ONIC		TEMPERATURE

M61007: Chain of Custody Page 1 of 11

國門		•		(H	AIN	ľ	F	C	Ü	S'	rc)[Y	7	F	ACCU	TEST	JOB	ø;	_	M	61	00		
MAC	CUTE	ST.		Ī	49	S TECHNOL	JARLB	OROL	IGH, I	MA 01	752		ONE	2	1-	5	ACCU	TEST	OUO	TE #:	<u> </u>			<u></u>		
	<u> Laborat</u>	ories			····	TEL: 50									_		41.0	CAL	INE	neu	ATIC	ה אב	on 1 16	100	MATRI	X CODES
	CLIENT INFO		ar Gray	1					MATK	он <u>[</u>	X	1000	200		344				·	UNBA	1110					RINKING
	sid + curre	นา				5e + a		<u>.</u>							(23	(10,00)	اق						l		WATER GROUND
NAME NEW	uEnglander	Wilter Sui	HR 150	PRO.	LECT I	VAME NECS, W	VA						1. 4.e.	36	2	Chomina	(1.0	3 4			- 1		ıl			WATER WASTE
ADDRESS	, J			LOCA	MOST									β	9010	ठ		3			ı					WATER
CITY,		STATE	1810 ZIP	PRO.	ECT I	1 <i>00-1</i> NO.				_				F. 4		Hexavalent		Chami								SLUDGE
	MucDonald			_	η-	78-5.	c 7.	_ 7	941	ī.,			ستت	Š	Cyanide	ड	ηc	र्ट			j					LIQUID
PHONE #	°: 975-55	1- 2120		FAX		LLECTION				_	DEC	TAVAT	ION	õ	ğ	द्र	Arsenia	total					•			OTHER SOLID
ACCUTEST	EIELD ID (B	OINT OF COLLECT	 ION	<u> </u>			SAMPL		BOF	Bornes	_	_	# T	Ē	()	외	¥	b					•		1.00.0	SE ONLY
SAMPLE *	PIELU ID7 P	OINT OF COLLECT		DA	TE	TIME	BY:				ě s		2	,				-		-	4		احنا	\vdash	LABU	SE UNLY
-12	WC-41			11/a	06	9:10	376	3		<u> </u>	11	44	4	$ \cdot $	~	4	-	-,	-		4		Н	$\vdash \vdash$;-	
-13	WC-42					9:25	1			2	11	44	<u> </u>	$ \cdot $	~	1	\preceq	✓					_	\vdash		
-14	WC-43					Tr 30		_	Ш	2	\sqcup	11	1	1	1	٧,				-	4		\vdash			
-15	WC-16					10:10			Ш	1	Ш	$\perp \downarrow$	11_		√										:	
-16	WC-15					10:20				2	Ш	Ш		\vee	7	$\sqrt{}$.					<u> </u>	
-17.	WC-14					10.35			Ш	1	Ш	11	11_			J	\checkmark	V		_		نند			*: ***********************************	
78	WC-13					10:40		.		2		Ш	1	\checkmark	\checkmark	\checkmark									· ·	
-19	WC-1					11:00				2	Ш		<u>ll</u>	V	✓	1									-4-	
-24	Mc-3					11:05				1			Ш		✓	1										
721	WC-3					11:10				2			Ш_		<u>/</u>	1	1	1						_		
-22	WC-4			1		11:15	1		$ \mathcal{L} $	1			1		1	1										
12 Transit D	ATA TURNAROUN	DINFORMATION	Section (F . V	DATA DEL	IVERA	BLE !!	NFOR	MATI	ON	1000	۳.	~ 7.2	n U			1	COM	MENT	S/R	EMA	AKS		بالم	
	STANDARD	APPROVED BY:			TAND.																					
☐ 7 DAYS	RUSH REMERGENCY		_			ERCIAL "B ELIVERAS								-					- 1		<u>-</u> -				1.1	
		<u> </u>				FORMS (SPECIFY	١.							I —			·	•			**				· .	· ·
14 DAY TURNA DAYA UNLESS	PREVIOUSLY APPRO	EMERGENCY OR RUI	SH IS FAX	' '									٠,		_											
		SAMPLE CUSTODY			ENTE	D BELOW					CHAN	GE P				LUD					ER	Υ _		3.7.5	12772	を表現
1. COM		DATE TIME:	1. TO	\$ _	-	• •		ELINOUR		BY:	>		1/2	JE TA	16.0	2	2.		18							
RELINGUISMED I	RY;	DATE TIME:	RECEWED B	1			7	SCHOOL	SHE'D E	вү;				YE TIN		-	RE	CEIVE	D &Y:							1
3.					<u>:</u>			٠.									1."							تمرد		

M61007: Chain of Custody Page 2 of 11

	4.1	
I		
l	4	
1		

幽山		eraye		C	H.A	TECHNOL	OGY CE	VTER	WES?	T • 1	BUIL	CONG)I	Υ	7 . 1 <	-[108		М	61	1007	,	
	CUTE						MARLBOR 18-481-620	OUGF	t, MA	017	52			3.	1	- 1			auor						
	Laborato		energin.	152.000	in the		LITY INFO							7	45	AN	ALYT	ICAL		ORMA	TION	100	10	MATRIX COD	41
NAME 35 ADDRESS ANDOR CITY. DOWN	Lard + Cu New Englar er M ngc Donald	NI BUS (47, NA OI STATE		PROJ LOCA PROJ	ECT NA 2.(1)V TION (10)V ECT NO	ers, r 67	Y /A	- G.								Hex. Chomainan		Dimitum	BANIC GIVER					DW DRIMKIN WATER GW GROUN WATER WW WASTE WATER SO SOIL SL SLIJDG CI OIL LIQ OTHER LIQUID	eD E E
PHONE #	°978-557-	8150		FAX		<u> 5-55</u>	5]	7 <i>'</i> 14	6					عِرا	博	J	77	اک	0					SOL - OTHER BOLID	
ACCUTEST SAMPLE #		OINT OF COLLECTS	ION	DAT		TIME	SAMPLED BY:	MATHIX	PO TO	_	ESE P	AVA So	TON E	Dioxiv	CNANN	×	Acsmic	Total	1.5					LAB USE ON	(LY)
M61007	Wc-5			11/21/	06	11:20	20	So	12	П			1	V	✓	/	7 7	·		\Box		1_	\sqcup		_
-24	WC-6			1		11:85	T								1	/	y	✓	\perp	:	\perp	1	\sqcup		
-25	WC-7	1		7		11:30			2				\mathbb{L}	V	V	1					4_	1_		<u> </u>	
-26	WC-S			\neg		11:35			1						1	1		_		_	\perp	_	┦		1.
-27	WC-9					11:40	1		2			П	Ц	V	1	1	V	✓	_	1		_	\sqcup	;	
-28	WC-10					1145		Ц	1		\perp	Ц		<u>L</u>	1	1		-	_	\dashv	4	╁-	\vdash		_
-29	WC-11					11:50			2	Ш	1	Ц	Ц.	ľ⊻	✓	1		_	_	_	4		\sqcup		
-30	WC-12					11:55		Ц	11	Ц	\perp	Ц	1	Ļ	V	/		_	_		4	\perp			\dashv
-31	WC-SED				1	4:55		Ш	1	Ц	4		\coprod	_	V	V		_	~	+	- -	┼	\vdash	· · · · · · · · · · · · · · · · · · ·	
-12	wc-sed	- 15			1	5:10		Щ	11_	Ц	1	Ш	_	<u> </u>	✓	V					-	┿	├		
-33	WL.SED -	16		₩		15:15	↓	1	2					V	/	V	1	<u> </u>	ľ			\perp			
-	DATA TURNAROUN			America.	4 T	DATA DEL	IVERABL	E INF	OPM/	TIO	N	1	1	を		Wit.	eri.		COM	MENT	S/REM	ARK	S		
☐ 7 DAYS ☐ 48 HOUR ☐ OTHER ☐ TURNA DATA UNLESS	REMERGENCY AROUND HARDCOPY, PREVIOUSLY APPRO	OVED	 		ISK DE TATE F THER (RCIAL *B LIVERAE ORMS (SPECIFY)							- - -								1700			
RELINGUISHED		SAMPLE CUSTODY	MUST BE		ENTER	BELOW	RIELIN	(OUS) R	MPLE	S C	HAN	GE P	10	ATE TI	ME:		RE	COU	TIEH	DELLY	EHY			A	
1. aug -	~~	11/22 13:50	1. 4	V		>	2. <	POCISION	سيحر	_	7	_			to lle	'00	2.	SE VE	187						\dashv
RELINOUISMED	ŘΥ;	DATE TIME:	я <u>фсе</u> (уез в	11	-		4.	peruojii		\leq	_		ľ				4.		١.				_		.
RELINGUISHED I	6Y:	DATE TIME:	RECEIVED 8	Y: .			SEAL.							P	RESER	ve wi	ERE A	PPLIC	ABLE			ONJE		TE JORGENATU	c c

M61007: Chain of Custody Page 3 of 11

國四	CHAIN	OF CUSTO	VE , , / L.		61007
ZACCUTEST.	MAI	PLBOROUGH, MA 01752 481-6200 • FAX: 508-481-7753	14/2	ACCUTEST QUOTE #: '	
CLIENT INFORMATION	FACILIT	Y INFORMATION	AN.	ALYTICAL INFORMATION	MATRIX CODES
W&C NAME 36 New England By Ctr., Str. 180 ADDRESS ANDOVEV MA 01810 CITY, STATE ZIP BEND REPORT TO:	Creese & Coo PROJECT NAME Danvers, M.A. LOCATION 710167 PROJECT NO.		- 1880 - 1890 - 1800 -	Chrominus Organic Carlos	DW- DRINKING WATER GW- GROUND WATER WW- WASTE WATER SG - SOIL SL- SLUGGE OF - CIL LIQ- OTHER LIQUID
PHONE #	FAX # 418-557		1 X 3 3 3	Ctal C	SOL - OTHER SOUD
ACCUTEST SAMPLE # FIELD ID / POINT OF COLLECTION	COLLECTION SA	MPLED BY: PRESERVATION	Dickin 8 Cyanick Hexauctent	A To	LAB USE ONLY
-34 INC-SED-8	11/29/06 9:00 :	JP 50 1 11	VV		
35 WC-SED-6	11/22/06 9:10	1 2	411	. 🗸 .	
-26 WC-SED-5	1 9:25		V V		
-22 WC- SED-4	9:35	1 2	111		
78 WC- SED- 2	9:40		VV	V	
39 WC - SED-1	9:45		111		
-40 WC - 101	12:10	2	$V \vee V$		
-4/ WC- 17	11:00	2	V V V		
-V1 WC - 19	11:10				
-43 WC - 21	11:20	2			J. 100 N. 1
-44 WC - 25	11.40	1/2	1///		
DATA TURNAROUND INFORMATION	DATA DELIV	ERABLE INFORMATION		COMMENTS/RE	MARKS
☐ 14 DAYS STANDARD APPROVED BY: ☐ 7 DAYS RUSH ☐ 45 HOUR EMERGENCY ☐ OTHER ☐ 14 DAY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX DATA UNLESS PREVIOUSLY APPROVED	STANDARD COMMERCIAL "B" DISK DELIVERABLE STATE FORMS OTHER (SPECIFY)	E		<u> </u>	
		ACH TIME SAMPLES CHANGE POS	SESION, INCLUD	NNG COURIER DELIVERY	
RELINGUISHED BY: DATE THRE: RECEIVED 1. 1. 22 13.50 1. RECEIVED 3. 3. 3.	18-	RELINGUISMED BY:	MATE TIME:	RECEIVED BY	2

M61007: Chain of Custody

Page 4 of 11

國山			(СH	AIN	LOGY	/ CE	NTER	WES	r • 1	BUILL) DONE	_		Ł		TEST					16	100	7
E AL	CUTI				TEL: 5	MARL	.BOF	lougi	i, ma	017	52		_	5	J.			rrest							
and the same of the same	CLIENT IN		· 7.00	ale et	FAC	ILITY	INF	ORMA	TION	, N	W**		ئى بىرى ئارى		rurn			TICAL	IN	ORN	ATK	ON		2.5	MATRIX CODES
NAME 35 No ADDRESS	d & Current w England B Y Mac Donald		PF	Crees Donny Donny DCATION 2100 HOJECT	e d C NAME Crs. M P	ook								14 8290	40icB	ent Chrem 1196A	GOIOD	3							DW - DRINKNG WATER GW - GROUND WATER WW - WASTE WATER SD - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER SOLD
				ÇC	LLECTION			¥	. 9	-			TION	ť	Syanid	ģ	Š	5				٠,	۱. ا		
SAMPLE #	FIĘLO IO /	POINT OF COLLECTION		DATE	TIME	SAM B	PLEC Y:	MATTHIX	PO PE	포	\$ \$	K2504	NON	Ω	Ŋ	土	4	۴	•				Ш		LAB USE ONLY
1/2	Wc-23		111/	12/06	11:30	JF		Soi	2				X	V	V	\checkmark									
-46	we-27		I	1	11:50	1		1	2					\geq	\checkmark	~		·							
-47	WC-28		Τ	7	11:55	17.	÷	1.	1					L	V	\checkmark				_					<u> </u>
-48	WC-18	e	17		11:05	П		\prod	١						\langle	4				_	_				ļ
-49	VC-26				11:45	1			1			ľ			\leq				_	_					
-50	wc-22				11:25				1						\checkmark	V			_						<u> </u>
-51	WC-24				11:35				L					L	V	V				_	\dashv			Ш	
	Wa-20				11:15			1:)	Ш					V	\leq									<u> </u>
-57	WC-44	٠,		1.	12:05	1		\prod		Ш				\leq			✓			_	_	<u> </u>	-	\vdash	ļ
							ŀ															<u>.</u>			
			7	V		1	7	J								- 1				ĺ					
1.78 P. S. C.	DATA TURNARON	IND INFORMATION			DATA DEL	IVER	ÁBL	E INF	RM	TIO	N E			100	1116		45.7		COM	MEN	TS/R	EW/	nK8		Partie and
☐ 14 DAYS ☐ 7 DAYS ☐ 48 HOUL ☐ OTHER	STANDARD RUSH REMERGENCY	APPROVED BY:	000	STAND COMM DISK D	ARD ERCIAL "E ELIVERAL FORMS I (SPECIF)	BLE	M	·e!				_		_											

M61007: Chain of Custody Page 5 of 11

FAX NO. 19785577948

35 Now England Business Cir., Andover, MA 01810 (978) 557-8150 • 1-868-702-6371 Fax (978) 557-7948

CORPORATE OFFICES: Mahe, Massachusetts, New Hampehire, Connecticut, and Florida Operational offices throughout the U.S.

FAX TRANSMITTAL SHEET

Hard copy to follow in mail; Yes No X	Project #: Crease+ Cook - Banvers
Sender: Amy Walk Ce No. of pages (Including cover sheet)	Date: 12-1-06
sample management	
To: Accutest - Frank	Fax 8: 508. 481.7753

Comments

revised Coc's to include PAC analysis of 13 samples. Thanks!

This message is intended only for the use of the individual or entity named above and may contain information that is privileged, confidential; and exempt from disclosure under the applicable aw. If you are not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, please not by us immediately by telephone and return the original to us by postal service at the address noted on this stallonery. Any dissemination, distribution, or copying of this communication by anyons other than the intended recipient is strictly

M61007: Chain of Custody Page 6 of 11

Page 141 of 147

					CH	AIN	OI	7 (EU	SI	OI) 7	7	^	CCUT	EBT A	OR 8:		^	161	₽ 7
8	AC	CUTES		- 1	; 495	TECHNOLI M TEL: 600	ARLBOR 9-481-620	OUGH	L MA O	1752				^	CCUT	BBT Q	UOTE	Ø:	٠.		
		- OLIENTINFONI				-FAOIL	TY-INFC	RMA	HON-			\pm		-ANA	धना	CAL	NF OI	MAT	ЮН		MATRIX CODES
.	NAME 35 N ADDRESS CITY, Drule SEND REPORT TO	t Curran	c Gr. , Ste. 1* 1A or TATE 2	Ma	PROJECT N	67 6.						(2007)	(40,10 R)	ANT Civation	(40103) S	Chreminary	Pragnis Carism	שומשם המעופב	·		DW- DRINKING WATER WATER WATER WATER WATER SO- SOR SI- BIJIOOR OI- OR LIQUID SOL OTHER LIQUID
E	PHONE #	418-221-41	<u>, c</u>		FAX # 9	LECTION			1 -1	bapas	RVATIO	Н.	} ~ }	1	3	႕.	.]`	9	1 !	· •	BOTO
9785577948	ACCUTEST SAMPLE #	FIELD ID / PO	NT OF COLLECTIO	*	DATE		SAMPLED BY:	Tar.	O LO		NO M	1		Here	1		٩	3			LAB USE ONLY
~	- 1	110-00-	1014		Why low	15:20	k	5/	1		T 😧	\top		1.7	П	V	Т	T			
<u>S</u>		WC-SED-			li toi los		1F	40	131	\top		1.	1/	1	少	ø	1.	/			
FAX	-1	WC-SED-		1				1	2	11	1 111	1	15	7			\neg		1.	\Box	
		415-5ED-19		——	Mps file			- -	 []	++	1-111	╁	1	1	一	10	7	10	—		-
	- 4	WC-SED-I	1	<u></u>	11/22/06			╁	12	╅	- 	+	14	1		*	4	+	+-		
	-5	//c-:5£0-	13		1/71/16	7:20	AW	1:	1-4	++	1 111	+	44	<u> Y </u>		* †	+	+	+-	\vdash	
,t.	-> 4.	WC- SF 12-	ـــــلا		11/27/66		4.~~	11	1-11	++	+-+}}	+	/ /	14		-}	+	-	+		
Curran		11 - 5ED .5	1		il/rijs/p	740	Mw.	╀	121	-1-1		4	44	4	\dashv	- /-	4	+	+-		
Ş	-8	WE-SED.	7		11/22/06	750	AW	1 i	1)	-1-1	1-11-1	4	1V	W		_		-		-	
-60	- 4	WC- SFIL	3		11/12/16	200	Mal		131	ᆚ		ىل	بحل			✓	٢٢.		- -	-	_
ard.	- 10	WC-SED	- 10		ulaalou	350	120	Ш					44	1.4			1	<u>V</u>	<u> </u>	Ш	<u> </u>
Hoodard	~ 1)				Haaig	50	Ţ	V		\prod			V	1		1		ľ			
Æ		DATA TURNAROUNE			Historia	DATA DEL		E INF	ORMA	TION	1	十	-	سيكسواب	-		COMIL	ENTE	/REM	ARKS	
FRI 10:45	14 DAYS 7 DAYS 48 HOU O OTHER	S STANDARD S RUSH R EMERGENCY LAROUND HARDCOPY. S PREVIOUSLY APPRO	APPROVED BY:		O OTHE	MARD BRCIAL "E BELIVERAL FORMS R (SPECIF	7)					-				1	,				
8			AMPLE CUSTODY			ED BELOW	EACH T	HE S	AMPLE MED BY	S CHA	NGE PO	SES	ON, P	CLUK	ING	COU	ILER I	ELIV	ERY		
DEC-01-2008	1. LAM	D BY BAMPLERI	11/22 13:50	MECENSE !	12-1		12								2.			<u>, '</u>			
ည်	RELINGUISHE		DATE TIME:	RECEIVED	W. A.	4 .	REL 4.	MOUNN	HED BY:		,	DATE	TIME		4	CELVE	D BYL				•
ä	3.	p er:	DATE TIME:	A. RECEIVED	BY:		192	L.				Ь	PRES	RYE W	HERE		ABLE		,	IN ICE	TERP SAUTURE
	B.			Б.		· ·									Ω						<u>c</u>

M61007: Chain of Custody Page 7 of 11

	l	CUTES		•	Cl	H./	TECHNOLO	OGY C	ENTE	FIWES GH, MA	7 + BI 01752	HLD9 ?	ig ok	Y	,	L		TEST				77	L_/	מט	7
		1 CLIENT INFORM				=				ATION					_	AN	ALY	ПСАІ	L IN	ORM	ATIC	N.			MATRIX CODES
ADI CIT	ME DHESS AT NOTE AT NOTE	d + Cuira England 8.w C W	ALE 01.	180	PROJE	CT N AN HON LOT N	SR + Co AME es, Vir	ock A	-7	941		SER	/ATION	Dinxin (4,390)	ն	. Lent		Trital Chamaine	-4						DW - ORINGUNG WATER WW - GROUND WATER WW - WASTE WATER SO - SOIL LO - OIL LUG - OTHER LUGUED SOLID
AC SA	MPLE #	FIELD ID / PO	NT OF COLLECTION	н	DATI	E	TIME	SAUPL BY:		A D	₽ 3	8	1	7 -	1.0	1	₹	+	P. Sales			١١			LAB USE ONLY
<u> </u>	-12	WC-41	<u></u>		יבענ	10.	9:10	Τ0	- -		+	+	1	17	1,	17	-								
		WC - 40		-	71541	ruci	4:85	1	+	1		1	111		1	1	V	17							
-	-13	WC - 43	1		-	一	9:30	1	+			\top	11	1,	1	17			V						
-	-15						ام:اه		1	1	11	11	111.	1	Ĺ	1.			V	1					
-		<u> </u>		 -	-				+		,	1.	1#	1.	, ×	1		1	Ť						
. -	714	WC-15			-		10.35		+	11	1	11	-	1	1	1	1	4.7	/	1					
<u> </u>		WC-14 WC-12			-		10.22	1	-	11:	11	Н	111	17	1	1.7	1.75	7	\dagger	†	T^-	Г			
	_ 18	MC-17		<u> </u>	<u> </u> '	111	11.00	1	+			+	1:1		1	, ,	1-	+-	1	+		-	-	-	7
, [- 19		K-3)		 	 -		1	+	+		+	1	+	T.	//	1	+	\perp	†	-	-			
: H	₩ سر2		A CONTRACTOR				17:02	1-1-		11.	11	\top	-	1.	+	47		1.	1	1	1	1	-	<u> </u>	
nongar n	-21 -22	W1-3"		<u> </u>	1571		11.10	+	\dashv	+++	++	+	11	Ť	12	1,	Y	۲	1,7	1	T	1	-	<u> </u>	
-		M.C. A			1	7	11:15	1	4	1/		بان	1 11	+	٢,	1	<u></u>	+	Y	MME.	ire/	DEU	DKC	<u></u>	
0000	14 DAYS	REMERGENCY AROUND HAROCOPY.	APPROVED BY:	him fax	0.0	OMM ISK E TATE THE	ERCIAL "I DELIVERAL FORMS R (SPECIF	3" BLE Y)					_	-				-1							
		BY SAMPLER:	AMPLE CUSTODY	MUST BE	DOCUL	ENT	ED BELOW	EACH	THAT	E SAME	LES C	HAN	E PO	BESK	N, I	NCLU	OIN	G CO	URIE VED 8	R DE	LIVE	HY	<u> </u>		· · · · · · · · · · · · · · · · · · ·
1	ELMOUISIED		THE ISO	1. Const	3-	>=			2	NIBHED!		/	<u> </u>	DATE	YME:		\dashv	2. NECEI 4.	NED II	rv.				·-	
7	UI INQUIBRE 5.	DY:	DATE THE	MECHIVED 5.	8Y:	2			EAL P	-			·- ·		PRE	ERVE	MHEN	EAPP	LICAE	K.F			N ICE		TEMPERATURE C

M61007: Chain of Custody Page 8 of 11

		CUTES	271		CH	TECHNOLO	OF OGY CEN	TER W	'E8T -	BUILD	O]	D)	7	L		EST D	OB#:		Ml	.10	D 7	
	-	Laborato:					ARLBORO 1-481-620				53					•						
		CUENCINEOR				FACIL	TY INEQ	BUAT	ON.					AN	UYT.	CAL	NFOR	ITAM	ON			ATRIX CODES
ADD CIT	DHESS Y	ord + Cra ord + Cra ord + Cra ord + Cra ord + Cra	V) 874: AC 2	10	PROJECT H	50+Co AME 70(5, 1) 10.	ok W		le		,		4	1,000 1,000 1,000	16.	Ch MIMILY WA	2 2 2 2	Transacta comoc				DW - DRINKING WATER GW - GROUND WATER WW - WANTER WATER BO - BOIL 8L - SLUDGE CI - OR. LIQ - OTHER LIQUED SOL - OTHER BOLD SOLD
-	· · ·					LLECTION				PESE	AVATIO	피 :			3	Total	3	ġ.			<u> </u>	
	CUTEST	FIELD TO / PO	OULOL COLLECTIO	N [DATE	TIME	BAMPLED BY:	MATRIX	5 E		0 P	$\perp 1$	ă J	13	¥	3	واي	₹_				LAB USE ONLY
-		NIC .			ulailo6	11:20	70	S	a	TT			//	1					1			
-	- 2.3				Theres	1	1	Ť	177	11		П				./		Ί.			L	
L _	- 24	MC-10				11:35	 		2	++		Η.	7	1.		-	一	T	7		\neg	
· [- 7	W(7				11:30	 	 -	占	╅┪	1-1-1	Η'	- +	14		-	-	,	1		\neg	
	~ 26	WIC-9				11:35	$oldsymbol{oldsymbol{oldsymbol{eta}}}$	H	111		1-11	-	-1-	1-4				4-		-		
	-27	W: - 9				11:40		Ŀ	12	11.	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	11	/ /	12	14	$ \checkmark $		+	+-		-	1
\vdash		MC-10				11:45		1	11				1	1./	نا				4		4	2.3
-	-28					11.50		11	3		TH	Ι.	⁄1√	11	1 -2	1_1		1			_	11 (th)
-	- 29	MC-11			 - 	11:55	1-1-	11	+*,	7	111		٦,	1/			_ \	1				
1_	- 30	MC-13				++++++	 [-	1+	+,	41	+-11		Τį		1		. 7	7	\top			
L	-31	WC-SED	-14			14:55	-	1+	+4	++	+++	11	- 12	H¥.	 		×-	+	-	1		
-1	- 31	WC- SED	- 12			15:10	1	14	444	\perp	4-11	╀		1	+-		-+	-	+	-	1	
		1	4		 ↓ ↓	15,15		11	12		111	1.	1	1	1	V	1	V)	1			
L	- 33	100			-	DATA DE	LIVERAD	b But	OBW	TION	- 	: 		•	. 1	7	COM	EXT	BATEN	ARKE		
\perp		DATA TURNAROUN	APPROVED BY:		D STAN	-		,	-			_					, .					
15		S STANDARD S HAUR B	APPHOYED BY:		☐ COM	MERCIAL "		į				i							٠.,	•		
10	48 HOU	R EMERGENCY				DELIVERA E FORMS	BLE)				- 1										•
	OTHER		EMERGENCY OR RUI	 BW 10 PAY		n (SPECIF	M															
- 13	14 DAY TUR DATA UNLES					· .		(DE 1.0	or ow	-		
-			BAMPLE CUSTODY			TED BELOY	W EACH T	ME 8	AMPLI HED DY:	S CHA	NGE PO	DS SE	HOM,	NC1.I	JEJI N.G	CON	ED IM	DELL	rent	-ـــــــــــــــــــــــــــــــــــــ		
		D BT BANPLER:	MATERIAL 13:50	1.	74		2.			•		1_				2.		٠, ٠,	<u>.</u>	<u>.</u>		
H	1. MANA	D BT:	DATE TIME:	RECEPTED	BE	والمروز أشيعية	ME	MOURS	HED BY			DAT	TE TIME			ECENT	EO BYI					
- 1:	3.			3.		200	- 4.		·				Per	LERVE			CABLE			ON ICE		TEMPERATUR
	RELINGUISH	D BY:	DATE TIME:	NECRESED	91 :		1 62	AL E					.,							· O		

M61007: Chain of Custody Page 9 of 11

MU LAC	CUTEST.		CH.		<i>BOROUGH</i>	4 MA 01	762		Y			TEST OF			ML	10	27.
1.6	Laboratories CUBITATORMATION			TEL: 806-48	1-6200 F		-481-77 6	33		- 1	INIVI	TOAL B	KEORY	ATION .		· - 1	MATRIX CODE
NAME 3. New ADDRESS AND EVEN CITY. BEID REPORT TO PHONE	Existency in the State Manual State How Danield	CIRIO ZIP	PROJECT N Day v LOCATION 2 10 L PROJECT N	et (oal					OES U	10 10 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	3		Aprilable Canide				DW - DERRING WATER GW - GROUND WATER WW - WASTE WATER SO - BOLL SL - SLUDGE OI - CIL LIQ - DTHER SOL - OTHER
ACCUTEST SAMPLE	PIELD ID / POINT OF COLLECT	•		LLECTION	PLED E	10 to	RESER E 8	NOTAV B	Dioxi		A Contract	1	Pus.				LAB USE ONL
	110 cm d						2 2		14-1	7:	Ŧ.:	+	/ /	-	+	5. 45	
-34	WC-SED-8		neaide Neaide		P 50	12			1,1	// 4	-	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	┝┤╌	-		
-34	MC - SED- 5		การเการ	9.35	} 	17	1+1		1	7			+	-	+-		l
-37	101 525-11		-	9:35	 	a	111		17	<u> </u>	1		17	-	†		
736	WC - SED- 3		-	9:40	 	17	11		11	<u> </u>	-		/ 		+-		
	Nic - SED-1		_	9.45	 -	1 1	++		1 1	717	-	-1	4		+		
-35	MC - 101			15:10	111	15	11		ľŽ	VI	1		1		1		
- 41	WC- 17		-i	11:00	111	2			17	./\	/		1.		-		1 4 11
- 42	WC - 19			11:10	111	2			TŽ,	Ž	1					L	1
-43	WC - 21			11:20	1-11	12			17	才	1		1			TAX	
-44	WC - 25		1/	11:44	11	2			V	·/ v	1						
	ATA TURKAROUND INFORMATION			DATA DELIVE	RABLE IN	ORMAT	KOIT					٥	OMNE	Y FARE	MARK	5 i:	\$2.03
OTHER	RUSH REMERGENCY LAQUING HARDCOPY, EMERGENCY OR RE PREVIOUSLY APPROVED	UBH ID FAX	DISK (ERCIAL "B" DELIVERABLE FORMS R (SPECIFY)				· .	 - -					<u></u> \	- 1	·	
	SAMPLE CUSTOD			ED BELOW EAR	CH TIME 6		6 CHAN	DE POS	SERION Date the	, INCL	IDING	COUR	ER DE	LIVERY	7_		
1. (LANA)		RUCOVED BY			2.						_ 2	<u> </u>			· 		<u></u>
Michousepp 3.	de Odt Talk:	8	N		A.	HED BY:		-,]	OATE THE	B:		ECEIVED 	BY:		. !	. 6	
RELINGUESHED	BY: DATE TIME:	RECEIVED BY	6		SEAL 6		<u>_</u>		Př	HEAVE	WHERE	APPLICA	B/E		ри кст	1	TERPLOY
3-		. 6.			<u> </u>									 ,	ئىنىڭ -	20.52	(N. 44.) (A.S.

M61007: Chain of Custody Page 10 of 11

	CHAIN OF CUSTOD	Y ACCUTEST JOB 4: M 6/007				
ACCUTEST.	495 TECHNOLOGY CENTER WEST BOLLDING GITE	ACCUTEST QUOTE IS.	ACCUTEST QUOTE ::.			
Laboratories	TEL: 508-481-8200 • FAX: 508-481-7763	ANALYTICAL INFORMATION MATRIX	CODES			
Wondow & CHYMAN AND STE 120	FROJECT NAME Dangers, pl P. LOGATION	4 1974 And 1984 And 1	WATER			
ADDRESS AND OFFICE STATE ZIP BOD REPORT TO:	PROJECT NO.	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
PHONE #	COLLECTION E PRESERVATION	TARE TARE				
SAMPLE 8 PRELO ID / POINT OF COLLECTION	DATE TIME BAMPLED & 5 6 2 8 8 8 8	1 3 4 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BE CAL			
-v- Wc-23	11/22/06 11:30 IP 80 2 X					
-45 WC-27	1 1 11:50 1 1 2 1 1 1	 				
-47 WC-2%	H:55	 				
-48 WC-19	u:05	 				
- V9 VC-36	*	 				
-57 WC-72						
~5/ V/(-24	h:35					
-51 V/(-74 -52 Ws-20	11:15					
-53 WC-44	1 1 12:05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	▗▋▗ ▎ ▗ ▎ ▗ ▍ 					
	4	COMMENTS/REMARKS	·			
DATA TURNAROUND INFORMATION	DATA DELIVERABLE INFORMATION					
14 DAYS STANDARD APPROVED BY: 1 7 DAYS RUSH 1 48 HOUR EMERGENCY 2 OTHER	G STANDARD COMMERCIAL "B" DEK DELIVERABLE STATE FORMS FAX STOTHER (SPECIFY) MCP					
	ST BE DOCUMENTED BELOW EACH THE SAMPLES CHANGE PO	BRESION, INCLUDING COURSER DELIVERY				
THE THE PERSON OF THE PERSON O	ENED BY:	12.				
12 12 50 1	PARTIES ST. PARTIES ST.	DATE THES: RECEIVED BY:	,			
1 1964 (BOA) (MINING BOX (BOA)(BOA)	DENVIR BY: BEAL F	PRESCRIVE WHERE APPLICABLE ON ICE	TENPERATU			

M61007: Chain of Custody Page 11 of 11

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC-CAM	Exhibit VII A-1		
21 May 2004	Revision No. 3.2		
Final	Page 10 of 32	,	

Title: MADEP MCP Response Action Analytical Report Certification Form

		MADER	MOP Analytical Me	ethod Repo	n Certific	ation Form	industry in		
Labor	atory Name:	Accutest Laboratorie	s of New England			Project #:	M61007		
,		Creese + Cook Dan				MADEP RTN	None		
	M61007-1 through M	tions for the following 61007-53 CORP ENG 81 M, EF	٠.	W846 3060	√ 7196A				
Sampl	e Matrices:	Groundwater	Soil/Sediment X	Drinking Wa	ter ()	Other:	<u>, , , , , , ; ; ; ; ; ; ; ; ; ; ; ; ; ;</u>	()	
34-3	'MGP/SW:846	8260B ()	8151A ()		8330 ()	6010B	(X)	7470A/1A ()	
1.17	Methods Used	8270C ()	8081A ()		VPH ()	6020	()	9014M ² ()	
	cinedan MADEP				EPH ()	7000 S ³	()	7196A (X)	
Analyt	endium ofical Methods (* 1515) ical Methods (* 1515) ick allithateapoly)	2 M - SW¥846 Method	g Number (RTN): I/kon e014 of MADEP/Phys s 7000/Series/Distindi	iologically Av	aliable Cya Panglanaly	nide (PAC) Method te			
	An affirmative resp	onse to questions A	, B, C, and D is requ	uired for "Pi	resumptiv	ve Certainty statu	ıs		
A	,	ceived by the laborato e Chain-of-Custody do	•				Yes	□ No ¹	
В	Were all QA/QC pro included in this repo	cedures required for the followed, including the QC data that did not	he specified analytica he requirement to no	al method(s) ote and			Yes	□ No ¹	
С	Does the data include for "Presumptive Cere (d) of the MADEP do	led in this report meet rtainty", as described in coument CAM VII A, "Cor the Acquisition and	in Section 2.0 (a), (b) Quality Assurance an), (c) and nd Quality		Ø	Yes	□ No ¹	
D		ods only: Was the Vons, as specified in S		un without		Ø	Yes	□ No ¹	
	A response to que	stions E and F below	is required for "Pro	esumptive (Certainty'	" status			
E	Were all QC perform specified methods a	nance standards and i chieved?	ecommendations for	the		Refer to Narrative	Yes	□ No ¹	
F		nalyte-list compound	s/elements for the sp	ecified		Refer to Narrative	Yes	U No ¹	
	All Negative respon	nses must be addres	sed in an attached	Environme	ntal Labo	ratory case narra	ative.		
I the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.									
Sign	ature:	or tod		Position:	Lat	boratory Director			
Print	ed Name:	Reza Tand		Date:		12/21/2006			